Publications
Filters
total: 998
Catalog Publications
Year 2024
-
A modified DC Hebb–Wagner polarization method for determining the partial protonic electrical conductivity in mixed-conducting BaGd0.3La0.7Co2O6−δ
PublicationIn this work, partial protonic conductivity in mixed conducting (BZCY721) and BaGd0.3La0.7Co2O6−d (BGLC137) was studied. For this purpose, a modified DC Hebb–Wagner polarization method was used. A four-wire type of galvanic cell as well as a suitable calculation model was applied. The method was validated using proton conducting electrolyte – BaZr0.7Ce0.2Y0.1O3−d – as a reference material. For the first time, protonic partial conductivity...
Year 2023
-
Fe-modified Mn2CuO4 spinel oxides: coatings based on abundant elements for solid oxide cell interconnects
PublicationThe current state of the art steel interconnect coating materials are based on critical raw material - Co-oxide spinels. Replacing Co-oxide spinels with alternative, abundant materials can reduce the dependence on the critical raw materials. Cobalt-free coatings with the general formula Mn2-xCuFexO4, where x = 0, 0.1, 0.3, were electrophoretically deposited on a ferritic stainless-steel support and evaluated. Prior to deposition,...
-
Modelling and optimisation of MXene-derived TiO2/Ti3C2 synthesis parameters using Response Surface Methodology based on the Box–Behnken factorial design. Enhanced carbamazepine degradation by the Cu-modified TiO2/Ti3C2 photocatalyst
PublicationIn the present study, a hydrothermal method in a water/ethanol environment was used for the first time to obtain novel Cu/TiO2/Ti3C2 composites with high photocatalytic activity for the degradation of carbamazepine (CBZ) under simulated solar light. The Box–Behnken factorial design was coupled with Response Surface Methodology (RSM) for synthesis parameter optimisation. The effect of different synthesis parameters, including temperature, time...
-
The new method of ZnIn2S4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance
PublicationThe new method of ZnIn2S4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance
-
The Sonocatalytic Activation of Persulfates on Iron Nanoparticle Decorated Zeolite for the Degradation of 1,4-Dioxane in Aquatic Environments
PublicationIn the chemical industry, 1,4-diethylene dioxide, commonly called dioxane, is widely used as a solvent as well as a stabilizing agent for chlorinated solvents. Due to its high miscibility, dioxane is a ubiquitous water contaminant. This study investigates the effectiveness of catalyst- and ultrasound (US)-assisted persulfate (PS) activation with regard to degrading dioxane. As a first step, a composite catalyst was prepared using...
Year 2022
-
Capping ligand initiated CuInS2 quantum dots decoration on, ZnIn2S4 microspheres surface under different alkalinity levels resulting in different hydrogen evolution performance
PublicationSurface distribution of quantum dots (QDs) at the semiconductor matrix caused by synthesis condition (e.g. pH of solution during coupling) could lead to different photocatalytic activity. Thus, achieving an optimal covering of semiconductor matrix by QDs has been challenging. Herein, the influence of the alkalinity level of aqueous decoration medium for the coupling of mercaptoundecanoic acid (MUA) capped CuInS2 quantum dots (CIS)...
-
Electrolytic deposition of reactive element thin films on Crofer 22 APU and evaluation of the resulting high-temperature corrosion protection properties at 700 °C–900 °C
PublicationThis article presents electrolytic deposition of thin Rare Earth (RE) coatings on Crofer 22 APU stainless steel substrates for high temperature applications, such as interconnects in solid oxide cell stacks. The deposition of coatings based on yttrium-, gadolinium-, lanthanum-, and cerium nitrates is discussed. The high temperature corrosion properties of surface-modified steels were examined using thermogravimetry and electrical...
-
Simple synthesis route for fabrication of protective photo‐crosslinked poly(zwitterionic) membranes for application in non‐enzymatic glucose sensing
PublicationThis work focuses on the fabrication of non-enzymatic glucose sensing materials based on laser-formed Au nanoparticles embedded in Ti-textured substrates. Those materials possess good catalytic activity toward glucose oxidation in 0.1 × phosphate buffered saline as well as resistance to some interferants, such as ascorbic acid, urea, and glycine. The electrodes are further coated with three different polymers, that is, Nafion,...
Year 2021
-
Application of Artificial Neural Networks to Predict Insulation Properties of Lightweight Concrete
PublicationPredicting the properties of concrete before its design and application process allows for refining and optimizing its composition. However, the properties of lightweight concrete are much harder to predict than those of normal weight concrete, especially if the forecast concerns the insulating properties of concrete with artificial lightweight aggregate (LWA). It is possible to use porous aggregates and precisely modify the composition...
-
Effect of Functionalization of Reduced Graphene Oxide Coatings with Nitrogen and Sulfur Groups on Their Anti-Corrosion Properties
PublicationElectrophoretic production of anticorrosion carbonaceous coatings on copper could be successfully performed by anodic oxidation of negatively charged graphene platelets suspended in an aqueous solution. The various platelets were synthesized by Hummer’s method followed by a hydrothermal reduction in the presence of NH4SCN which was expected to substitute some parts of graphene structure with nitrogen and sulfur groups. X-ray photoelectron...
-
Effect of small quantities of potassium promoter and steam on the catalytic properties of nickel catalysts in dry/combined methane reforming
PublicationCarbon dioxide and methane are two of the principal greenhouse gases. Reduction of their content in the atmosphere is currently the subject of much worldwide research. Dry and combined reforming of methane are effective methods of CO2 and CH4 utilization and production of synthesis gas (syngas) in chemical technology. Testing of catalysts that provide the desired H2/CO ratio and long operation time is one of the critical aspects...
-
Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode
PublicationThe study on novel electrode material composed of structured titanium foil with embedded Au nanoparticles and modified with chitosan with entrapped glucose oxidase is presented. To confirm the successful immobilization of glucose oxidase FT-IR analysis was performed. The response of electrodes were tested towards glucose in the presence of different interference compounds and biological fluids. The prepared material exhibits excellent...
-
Electron attachment to representative cations composing ionic liquids
PublicationUsing ab initio electronic structure methods with flexible atomic orbital basis sets, we investigated the electronic structure and stability of reduction products of selected representative cations (C+) constituting ionic liquids. We found that an electron attachment to such cations leads to the neutral radicals, whereas a subsequent attachment of another (i.e., excess) electron leads to adiabatically stable anions only in two...
-
Enhanced electrochemical kinetics of highly-oriented (111)-textured boron-doped diamond electrodes induced by deuterium plasma chemistry
PublicationNovel highly-oriented (111)-textured boron-doped diamond electrodes (BDDD) featuring high electrochemical activity and electrode stability toward electrochemical analytics were fabricated by deuterium-rich microwave plasma CVD. The high flux deuterium plasma-induced preferential formation of (111)-faceted diamond as revealed by XRD. The highly-oriented diamond surface exhibited improved boron dopant incorporation and activation,...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublicationPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
Facet effect of TiO2 nanostructures from TiOF2 and their photocatalytic activity
PublicationIn this study, special attention is focused on the design of TiO2 morphology and microstructure in the two-step preparation procedure using TiOF2 as a precursor to study their photodegradation mineralization efficiency. Firstly, TiOF2 was synthesized by a simple solvothermal method using titanium(IV) tetrafluoride, which was further used as a precursor in preparation of anatase 2D nanosheets, octahedral, decahedral, and rectangular prisms...
-
Hydrothermal Cobalt Doping of Titanium Dioxide Nanotubes towards Photoanode Activity Enhancement
PublicationDoping and modification of TiO2 nanotubes were carried out using the hydrothermal method. The introduction of small amounts of cobalt (0.1 at %) into the structure of anatase caused an increase in the absorption of light in the visible spectrum, changes in the position of the flat band potential, a decrease in the threshold potential of water oxidation in the dark, and a significant increase in the anode photocurrent. The material...
-
Improvement of Oxygen Electrode Performance of Intermediate Temperature Solid Oxide Cells by Spray Pyrolysis Deposited Active Layers
PublicationIntermediate temperature solid oxide fuel cells oxygen electrodes are modified by active interfacial layers. Spray pyrolysis is used to produce thin (≈500 nm) layers of mixed ionic and electronic conductors: Sm0.5Sr0.5CoO3−δ (SSC), La0.6Sr0.4CoO3−δ (LSC), La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), and Pr6O11 (PrOx) on the electrode–electrolyte interface. The influence of the annealing temperature on the electrode polarization (area specific...
-
Influence of alkali metal cations on the photoactivity of crystalline and exfoliated amorphous WO3 – photointercalation phenomenon
PublicationIn order to investigate the effect of photointercalation on photoelectrochemical properties, two types of WO3-based photoanodes, bulk and exfoliated have been prepared and investigated. An aqueous exfoliation method is introduced for the simple fabrication of amorphous and hydrated WO3 nanomaterial using commercial bulk WO3 precursor. The comparison of obtained material with bulk WO3 was performed using Raman, UV–vis, and XPS as...
-
Influence of selected CO2 absorption promoters on the characteristics of calcium carbonate particles produced by carbonation of the post-distillation liquid from the Solvay process
PublicationThe aim of this work is to compare the effect of selected process parameters, gas flow rate, CO2 absorption promoter concentration and its pKa, on the precipitation of CaCO3 by the gas-liquid method using a model post-distillation liquid from the Solvay process. To ensure effective capture of CO2, the absorption promoters used were ammonia, triethanolamine and triethylamine. The Box-Behnken Design was applied to plan the experiments....
-
Investigation of magnetic order in a new intermetallic compound Nd2PtGe3
PublicationIn the present study we report a successful synthesis of the new intermetallic compound Nd2PtGe3 by an arc-melting method. The powder X-ray diffraction analysis indicates that this compound crystallizes in an disordered variant of the AlB2-type structure (space group P6/mmm, no. 191) with lattice parameters a = 4.2455 Å and c = 4. 1933 Å. The compound exhibits a cluster-glass transition below Tf = 2.9 K, characterized through ac...
-
Low-strain sensor based on the flexible boron-doped diamond-polymer structures
PublicationA free-standing high boron-doped diamond nanosheet (BDDNS) has been fabricated for the development of a flexible BDDNS strain senor. High boron-doped diamond was initially grown on a tantalum substrate in a microwave plasma-assisted chemical vapor deposition method, and was then transferred to a Kapton polymer substrate to fabricate the flexible BDDNS/Kapton device. Before performing the transfer process, the thin BDDNS’s morphology...
-
Manganese–Cobalt Based Spinel Coatings Processed by Electrophoretic Deposition Method: The Influence of Sintering on Degradation Issues of Solid Oxide Cell Oxygen Electrodes at 750 °C
PublicationThis paper seeks to examine how the Mn–Co spinel interconnect coating microstructure can influence Cr contamination in an oxygen electrode of intermediate temperature solid oxide cells, at an operating temperature of 750 °C. A Mn–Co spinel coating is processed on Crofer 22 APU substrates by electrophoretic deposition, and subsequently sintered, following both the one-step and two-step sintering, in order to obtain significantly...
-
MgPd2Sb : A Mg-based Heusler-type superconductor
PublicationWe report the synthesis and physical properties of a full Heusler compound, MgPd2Sb, which we found toshow superconductivity belowTc=2.2K. MgPd2Sb was obtained by a two-step solid-state reaction methodand its purity and cubic crystal structure [Fm-3m,a=6.4523(1) Å] were confirmed by powder x-ray diffrac-tion. Normal and superconducting states were studied by electrical resistivity, magnetic susceptibility, andheat...
-
Nanosilver-loaded PMMA bone cement doped with different bioactive glasses – evaluation of cytocompatibility, antibacterial activity, and mechanical properties
PublicationNanosilver-loaded PMMA bone cement (BC-AgNp) is a novel cement developed as a replacement for conventional cements. Despite favorable properties and antibacterial activity, BC-AgNp still lacks biodegradability and bioactivity. Hence, we investigated the doping with bioactive glasses (BGs) to create a new bioactive BC characterized by time-varying porosity and gradual release of nanosilver. The BC Cemex was used as the base material...
-
NbIr 2 B 2 and TaIr 2 B 2 – New Low Symmetry Noncentrosymmetric Superconductors with Strong Spin–Orbit Coupling
PublicationSuperconductivity was first observed more than a century ago, but the search for new superconducting materials remains a challenge. The Cooper pairs in superconductors are ideal embodiments of quantum entanglement. Thus, novel superconductors can be critical for both learning about electronic systems in condensed matter and for possible application in future quantum technologies. Here two previously unreported materials, NbIr2B2...
-
Self-assembly of vertically oriented graphene nanostructures: multivariate characterisation by Minkowski functionals and fractal geometry
PublicationThe enormous self-assembly potential that graphene and its derived layered materials offer for responding to the contemporary environmental challenges has made it one of the most investigated materials. Hence, tuning its extraordinary properties and understanding the effect at all scales is crucial to tailoring highly customised electrodes. Vertically oriented graphene nanostructures, also known as carbon nanowalls (CNWs), due...
-
Structural evaluation of percolating, self-healing polyurethane–polycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers
PublicationComposites with differently shaped micro- and nanofillers show various, unique thermal, and physicochemical properties when mixed with carefully chosen polymer matrix. Selected composition holds strategic value in achieving desired properties that is biodegradability, thermoelectric conductivity, and shape memory for organic coating. The main aim of this work is to briefly examine structural changes after reaching percolation threshold...
-
Structure and magnetic properties of BeO-Fe2O3-Al2O3-TeO2 glass-ceramic composites
PublicationIn this work, glass-ceramics in the xBeO–20Fe2O3–(80-x)TeO2 system with x = 0–25 mol% were synthesized by the traditional melt quenching route and studied by inductively coupled plasma optical emission spectroscopy, X-ray diffraction, confocal microscopy, infrared and Raman spectroscopy. BeO addition was found to support the crystallization process of Fe2O3 during melting, and an increased BeO content was associated with an increased...
-
Structure and thermoelectric properties of nickel-doped copper selenide synthesised in a hydrogen atmosphere
PublicationNickel-doped copper selenide—Cu2-xNixSe (x = 0; 0.01; 0.02; 0.03)—materials with high thermoelectric properties were synthesised through reduction of reagents in hydrogen. The impact of the nickel content on both the microstructure and thermoelectric properties was examined. The nickel-doped samples’ microstructure differed significantly from pristine copper selenide. Besides Cu2Se, copper precipitations were present in the materials....
-
Tin Oxide Encapsulated into Pyrolyzed Chitosan as a Negative Electrode for Lithium Ion Batteries
PublicationTin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen...
-
Visible-light-driven lanthanide-organic-frameworks modified TiO2 photocatalysts utilizing up-conversion effect
PublicationHighly efficient and quite stable composite with core-shell-like architecture reported herein, responds to the challenge of sunlight-driven photocatalysts. The Ln(ndc)/TiO2 photocatalytic system comprises active lanthanide-carboxylate coordination networks (Nd, Er, Ho, and Tm as metal ions, and 2,6-naphthalene dicar-boxylic acid as the organic linker) and inert titanium dioxide and allow to convert incompatible visible radiation...
Year 2020
-
A comprehensive evaluation of flexible FDM/FFF 3D printing filament as a potential material in medical application
PublicationThe use of FDM/FFF in 3D printing for medical sciences is becoming common. This is due to the high availability and decent price of both 3D printers and filaments useful for FDM/FFF. Currently, researchers' attention is focused mainly on the study of medical filaments based on PLA, PCL or their modifications. This contributes to insufficient diversity of medical-grade filaments on the market. Moreover, due to the lack of specified...
-
A Flexible Nafion Coated Enzyme‐free Glucose Sensor Based on Au‐dimpled Ti Structures
PublicationThe detection of glucose at low concentrations using electrochemical sensors is of great importance due to the possibility of using different human body fluids than blood, such as e.g. urine, saliva, sweat or tears. The interest behind those biofluids is related to their utility in non-invasive sugar determination. In this work, we present flexible, fully biocompatible electrode material based on Au nanoparticles immobilized onto...
-
A study of the kinetics of bismuth telluride synthesis by an oxide reduction method
PublicationThe kinetics of a reduction of bismuth and tellurium oxides in a hydrogen atmosphere, leading to the formation of thermoelectric bismuth telluride is investigated. The evaluation of the reaction kinetics was based on a thermogravimetric analysis performed in non-isothermal conditions. A non-parametric analysis method and the Friedman method were used for the evaluation of the data. Additionally, for a better understanding of the...
-
Antimony substituted lanthanum orthoniobate proton conductor – structure and electronic properties.
PublicationX‐ray and neutron diffraction have been utilized to analyze the crystalline and electronic structure of lanthanum orthoniobate substituted by antimony. Using X‐ray absorption spectroscopy and photoelectron spectroscopy, changes in the electronic structure of the material upon substitution have been analyzed. The structural transition temperature between fergusonite and scheelite phases for 30 mol% antimony substitution was found...
-
Bio-Based Polyurethane Composites and Hybrid Composites Containing a New Type of Bio-Polyol and Addition of Natural and Synthetic Fibers
PublicationThis article describes how new bio-based polyol during the liquefaction process can be obtained. Selected polyol was tested in the production of polyurethane resins. Moreover, this research describes the process of manufacturing polyurethane materials and the impact of two different types of fibers—synthetic and natural (glass and sisal fibers)—on the properties of composites. The best properties were achieved at a reaction temperature...
-
Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity
PublicationIn this study, we exploit the anti-oxidative potential of four carnivorous plants to produce uniform and biologically active silver nanoparticles. The use of polyvinylpyrrolidone promoted syn-thesis of quasi-spherical nanoparticles characterized by stability and high uniformity. Their activity was tested against three human pathogens and three species of plant pathogenic bacteria. The study demonstrates the influence of synthesis...
-
Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56
PublicationSingle crystals of the m = 8 member of the low-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m family were grown by chemical vapour transport technique and the high crystalline quality obtained allowed a reinvestigation of the physical and structural properties. Resistivity measurements revealed three anomalies at TC1 = 258 K, TC2 = 245 K and TC3 = 140 K, never observed until now. Parallel X-ray diffraction investigations...
-
Cathodic activation of synthesized highly defective monoclinic hydroxyl‐functionalized ZrO2 nanoparticles for efficient electrochemical production of hydrogen in alkaline media
PublicationThe high electrochemical stability of Zirconia (ZrO2) at high potentials strongly suggested it as an alternative to carbon supports, which experience reduced efficiency due to some corrosion problems particularly during prolonged electrocatalysis activity. However, the use of ZrO2 was limited by its low electrical conductivity and surface area. In this work, we developed a methodology for synthesizing monoclinic ZrO2 NPs with increased...
-
Ceramic composites for single-layer fuel cells
PublicationComposite materials consisting of acceptor doped lanthanum orthoniobate electrolyte phase (La0.98Ca0.02NbO4) and Li2O:NiO:ZnO semiconducting phase were synthesized. The precursor powder of La0.98Ca0.02NbO4 was prepared in nanocrystalline (mechanosynthesis) and microcrystalline (solid-state synthesis) form. The composite can be applied in a single-layer fuel cell, because of the presence of two phases acting as an anode and a cathode...
-
Ciprofloxacin-modified degradable hybrid polyurethane-polylactide porous scaffolds developed for potential use as an antibacterial scaffold for regeneration of skin
PublicationThe aim of the performed study was to fabricate an antibacterial and degradable scaffold that may be used in the field of skin regeneration. To reach the degradation criterion for the biocompatible polyurethane (PUR), obtained by using amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), was used and processed with so-called “fast-degradable” polymer polylactide (PLA) (5 or 10 wt %). To meet the antibacterial requirement...
-
Conductivity, structure, and thermodynamics of Y2Ti2O7–Y3NbO7 solid solutions
PublicationThe defect fluorite yttrium niobate Y3NbO7 and pyrochlore yttrium titanate Y2Ti2O7 solid solutions have been synthesized via a solid state synthesis route. The resulting stoichiometry of the oxides is Y2+xTi2−2xNbxO7, where x = 0 to x = 1. All of the samples were single-phase; however, for those with a predominant fluorite phase, a small amount of additional pyrochlore phase was detected. The volume of the solid solution unit cells...
-
Crystal structure and physical properties of AePd1-xP1+x (Ae = Ca, Sr)
PublicationWe report the discovery of two new compounds AePd1-xP1+x (Ae = Ca, Sr) crystallized in different hexagonal structures. Single crystals of AePd1-xP1+x (Ae = Ca, Sr) are obtained using the Bi-flux method. Crystallographic analysis by both powder and single crystal X-ray diffraction shows that CaPd1-xP1+x crystallizes in a non-centrosymmetric hexagonal structure with the space group P-6m2 (No.187) and lattice parameters a = b = 4.0391(9)...
-
Effect of selected ammonia escape inhibitors on carbon dioxide capture and utilization via calcium carbonate precipitation
PublicationCarbon dioxide was used to precipitate CaCO3 with CaCl2 solution in the presence of NH3 as a CO2 absorption promoter. Compounds that were previously indicated as inhibitors of ammonia escape during CO2 absorption were also added to the reaction mixture. Inorganic salts, i.e. ZnCl2, CuCl2, CoCl2, and organic substances, i.e. glycerol, ethylene glycol and triethanolamine were tested inhibitors in this work. A model post-distillation...
-
Electric and magnetic properties of Lanthanum Barium Cobaltite
PublicationThe cubic Ba0.5La0.5CoO3‐δ was synthesized using solid state reaction. The structural properties were determined by the simultaneous refinement of Synchrotron Powder X‐ray Diffraction and Neutron Powder Diffraction data. Iodometric titration was used to examine the oxygen stoichiometry and average cobalt oxidation state. Low‐temperature magnetic studies show soft ferromagnetic character of fully oxidized material, with θP = 198(3)...
-
Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces
PublicationDensity functional theory (DFT) is often used for simulating extended materials such as infinite crystals or surfaces, under periodic boundary conditions (PBCs). In such calculations, when the simulation cell has non-zero charge, electrical neutrality has to be imposed, and this is often done via a uniform background charge of opposite sign (“jellium”). This artificial neutralization does not occur in reality, where a different...
-
Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer
PublicationThe surface treatment of titanium implants has been applied mainly to increase surface bioactivity and, more recently, to introduce antibacterial properties. To this end, composite coatings have been investigated, particularly those based on hydroxyapatite. The present research was aimed at the development of another coating type, chitosan–nanosilver, deposited on a Ti13Zr13Nb alloy. The research comprised characterization of the...
-
Electrophoretic Deposition and Characterization of Chitosan/Eudragit E 100 Coatings on Titanium Substrate
PublicationCurrently, a significant problem is the production of coatings for titanium implants, which will be characterized by mechanical properties comparable to those of a human bone, high corrosion resistance, and low degradation rate in the body fluids. This paper aims to describe the properties of novel chitosan/Eudragit E 100 (chit/EE100) coatings deposited on titanium grade 2 substrate by the electrophoretic technique (EPD). The deposition...
-
Enhanced Mobility and Large Linear Nonsaturating Magnetoresistance in the Magnetically Ordered States of TmNiC2
PublicationWe have studied the magnetic, magnetotransport, and galvanomagnetic properties of TmNiC2. We find that the antiferromagnetic and field induced metamagnetic and ferromagnetic orderings do not suppress the charge density wave. The persistence of Fermi surface pockets, open as a result of imperfect nesting accompanying the Peierls transition, results in an electronic carriers mobility of the order of 4 × 103 cm2 V−1 s−1 in ferromagnetic...