Publications
Filters
total: 776
Catalog Publications
Year 2025
-
UV light-activated gas mixture sensing by ink-printed WS2 layer
PublicationWe fabricated a sensing layer from ink-printed WS2 flakes and utilized it for UV-activated gas sensing. The optical imaging of the structure made by repeated printing revealed the continuous layer comprising sub-µm flakes, confirmed independently by small-area AFM images (1×1 µm2). The activity of the sensing surface was investigated locally via AFM scanning of the surface with a polarized probing tip. The results indicated that...
Year 2024
-
A procedure for the visualization of fingerprint traces on standard and thermal paper using the electron excitation energy of 1,8-diazafluoren-9- one aggregates in a polyvinylpyrrolidone polymer
PublicationThe scope of this study is a new procedure for visualizing dactyloscopic traces on an absorbent surface using a solution based on aggregates of 1,8-diazafluoren-9-one (DFO) in a polyvinylpyrrolidone polymer (PVP). An absorbent surface is defined as a plain or thermal paper, which is considered to be a difficult surface due to its varying chemical composition. In the case of the thermal paper surface, the procedure can be further...
-
Accuracy of marine gravimetric measurements in terms of geodetic coordinates of land reference benchmark
PublicationThe article presents how the values of (3D) coordinates of land reference points affect the results of gravimetric measurements made from the ship in sea areas. These measurements are the basis for 3D maritime inertial navigation, improving ships' operational safety. The campaign verifying the network absolute point coordinates used as a reference point for relative marine gravity measurements was described. The obtained values...
-
Analysis of friction ridge evidence for trace amounts of paracetamol in various pharmaceutical industries by Raman spectroscopy
PublicationThe detection of potentially harmful substances presents a multifaceted challenge. On one hand, it can directly save lives, on the other, it can significantly aid and enhance police work, thereby increasing the effectiveness of investigations. The research conducted in this study primarily aims to identify paracetamol in fingerprints, considering situations involving direct contact of a person with paracetamol either chronically...
-
Automated measurement method for assessing thermal-dependent electronic characteristics of thin boron-doped diamond-graphene nanowall structures
PublicationThis paper investigates the electrical properties of boron-doped diamond-graphene (B:DG) nanostructures, focusing on their semiconductor characteristics. These nanostructures are synthesized on fused silica glass and Si wafer substrates to compare their behaviour on different surfaces. A specialized measurement system, incorporating Python-automated code, was developed for an in-depth analysis of electronic properties under various...
-
Designing high-performance asymmetric and hybrid energy devices via merging supercapacitive/pseudopcapacitive and Li-ion battery type electrodes
PublicationWe report a strategic development of asymmetric (supercapacitive–pseudocapacitive) and hybrid (supercapacitive/pseudocapacitive–battery) energy device architectures as generation–II electrochemical energy systems. We derived performance-potential estimation regarding the specific power, specific energy, and fast charge–discharge cyclic capability. Among the conceived group, pseudocapacitor–battery hybrid device is constructed with...
-
Diamond-Based Supercapacitors with Ultrahigh Cyclic Stability Through Dual-Phase MnO2-Graphitic Transformation Induced by High-Dose Mn-Ion Implantation
PublicationWhile occasionally being able to charge and dischargemore quickly than batteries, carbon-based electrochemical supercapacitors(SCs) are nevertheless limited by their simplicity of processing, adjustableporosity, and lack of electrocatalytic active sites for a range of redox reactions.Even SCs based on the most stable form of carbon (sp3carbon/diamond)have a poor energy density and inadequate capacitance retention during longcharge/discharge...
-
Efficient removal of 2,4,6-trinitrotoluene (TNT) from industrial/military wastewater using anodic oxidation on boron-doped diamond electrodes
PublicationWith growing public concern about water quality particular focus should be placed on organic micropollutants, which are harmful to the environment and people. Hence, the objective of this research is to enhance the security and resilience of water resources by developing an efficient system for reclaiming industrial/military wastewater and protecting recipients from the toxic and cancerogenic explosive compound – 2,4,6-trinitrotoluene...
-
Electrical Simulations of the SIS100 Superconducting Dipole and Quadrupole Circuits: Transients, Earthing and Failure Modes
PublicationThe 100 Tm superconducting synchrotron SIS100 is the main accelerator of the international Facility for Antiproton and Ion Research (FAIR) currently under advanced construction in Darmstadt, Germany. The SIS100 dipole circuit which creates the magnetic field required to bend the beam, consists of 108 dipoles distributed over six arc sections of the ring. The magnetic field for the beam focusing is generated by three individual...
-
Elucidating charge transfer process and enhancing electrochemical performance of laser-induced graphene via surface engineering with sustainable hydrogel membranes: An electrochemist's perspective
PublicationLaser-induced graphene (LIG) has emerged as a promising solvent-free strategy for producing highly porous, 3D graphene structures, particularly for electrochemical applications. However, the unique character of LIG and hydrogel membrane (HM) coated LIG requires accounting for the specific conditions of its charge transfer process. This study investigates electron transfer kinetics and the electroactive surface area of LIG electrodes,...
-
Enhanced electrochemical activity of boron-doped nanocarbon functionalized reticulated vitreous carbon structures for water treatment applications
PublicationAn extraordinary charge transfer kinetics and chemical stability make a boron-doped diamond (BDD) a prom- ising material for electrochemical applications including wastewater treatment. Yet, with flat geometrical sur- faces its scaling options are limited. In this study, the reticulated Vitreous Carbon (RVC) served as a substrate for boron-doped diamondized nanocarbons (BDNC) film growth resulting with complex heterogeneity carbon structures...
-
Enhanced visible light-activated gas sensing properties of nanoporous copper oxide thin films
PublicationMetal oxide gas sensors are popular chemoresistive sensors. They are used for numerous tasks, including environmental and safety monitoring. Some gas-sensing materials exhibit photo-induced properties that can be utilized for enhanced gas detection by modifying the sensor selectivity and sensitivity when illuminated by light. Here, we present the gas sensing characteristics of highly nanoporous Cu2O thin films towards both electrophilic...
-
Enhancing colloidal stability of nanodiamond via surface modification with dendritic molecules for optical sensing in physiological environments
PublicationPre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were...
-
Extra-curricular project-oriented education in optoelectronics in the Faculty of Electronics, Telecommunications and Informatics at Gdańsk University of Technology, Poland
PublicationProject-oriented education constitutes a key part of the curriculum in the Faculty of Electronics, Telecommunications and Informatics of Gdańsk University of Technology (Gdańsk Tech), Poland. Students on the Engineer and Master of Science level studies take part in several projects, both individually and in teams. In addition to compulsory activities, students have the opportunity to take part in the activities of student scientific...
-
Fabrication of high-density nitrogen-vacancy (NV) center-enriched diamond particles through methyl trityl amine (C20H19N) seeding
PublicationDiamond particles (DPs) show promise for advanced applications in bioimaging and quantum sensing due to the presence of defect centers. This work reports a unique growth process for diamond particles composed of nitrogen-vacancy centers (NV-DPs) using a methyl trityl amine (C20H19N) diamondoid seed, which acts as a nitrogen source for NV creation. Growth was performed via microwave plasma-assisted chemical vapor deposition in a...
-
Few-Layer Black Phosphorus/Chitosan Nanocomposite Electrodes via Controlled Electrodeposition for Enhanced Electrochemical Kinetic Performance
PublicationThis study presents the preparation and characterization of few-layer black phosphorus (FLBP) chitosan electrodes by controlled electrochemical deposition of chitosan nanoparticles on FLBP-modified glassy carbon electrodes. FLBP was prepared by solvent-assisted exfoliation of bulk BP and was further modified with chitosan forming together a nanocomposite, including easy cross-linking with nanomaterials and film-forming properties....
-
Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing
PublicationWe discuss the implementation challenges of gas sensing systems based on low-frequency noise measurements on chemoresistive sensors. Resistance fluctuations in various gas sensing materials, in a frequency range typically up to a few kHz, can enhance gas sensing by considering its intensity and the slope of power spectral density. The issues of low-frequency noise measurements in resistive gas sensors, specifically in two-dimensional...
-
Fluctuation-Enhanced Sensing of Organic Vapors by Ink-Printed MoS2 Devices under UV Irradiation
PublicationThis work presents the results of fluctuationenhanced sensing (FES) of selected organic gases by MoS2 sensor fabricated via a simple ink printing method. We demonstrate that low-frequency noise measured under UV irradiation (275 nm) is more sensitive to different gases than measured in the dark. The noise at 1 Hz under UV light increased 3.3, 3.5, 1.6, and 2.9 times for chloroform, tetrahydrofuran, acetonitrile, and acetone ambiances, respectively....
-
From ashes to porous hierarchical nanocarbon electrode: Upcycling secondary waste materials through self-catalytic chemical vapour deposition
PublicationMetal and metal oxide particles are abundant in various ash-based wastes. Utilizing these as catalyst sources for the fabrication of carbon nanomaterials could present a valuable approach to reduce our reliance on non-renewable and costly catalyst sources, thereby facilitating large-scale nanomaterial production. In this context, secondary waste materials (SWMs) are by-products resulting from the (complete or partial) combustion...
-
Game theory-based virtual machine migration for energy sustainability in cloud data centers
PublicationAs the demand for cloud computing services increases, optimizing resource allocation and energy consumption has become a key factor in achieving sustainability in cloud environments. This paper presents a novel approach to address these challenges through an optimized virtual machine (VM) migration strategy that employs a game-theoretic approach based on particle swarm optimization (PSO) (PSO-GTA). The proposed approach leverages...
-
Investigating Layered Topological Magnetic Materials as Efficient Electrocatalysts for the Hydrogen Evolution Reaction under High Current Densities
PublicationDespite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGMfree) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts for the hydrogen evolution reaction under high current...
-
Lessons learned in a decade: Medical‐toxicological view of tattooing
PublicationTattooing has been part of the human culture for thousands of years, yet only in the past decades has it entered the mainstream of the society. With the rise in popularity, tattoos also gained attention among researchers, with the aim to better understand the health risks posed by their application. 'A medical-toxicological view of tattooing'-a work published in The Lancet almost a decade ago, resulted from the international collaboration...
-
Magnetic field mapping along a NV-rich nanodiamond-doped fiber
PublicationIntegration of NV−-rich diamond with optical fibers enables guiding quantum information on the spin state of the NV− color center. Diamond-functionalized optical fiber sensors have been demonstrated with impressive sub-nanotesla magnetic field sensitivities over localized magnetic field sources, but their potential for distributed sensing remains unexplored. The volumetric incorporation of diamonds into the optical fiber core allows...
-
Molecular Design Using Selected Concentration Effects in Optically Activated Fluorescent Matrices
PublicationMolecular physics plays a pivotal role in various fields, including medicine, pharmaceuticals, and broader industrial applications. This study aims to enhance the methods for producing specific optically active materials with distinct spectroscopic properties at the molecular level, which are crucial for these sectors, while prioritizing human safety in both production and application. Forensic science, a significant socio-economic...
-
Multimodal analysis of traction forces and the temperature dynamics of living cells with a diamond-embedded substrate
PublicationCells and tissues are constantly exposed to chemical and physical signals that regulate physiological and pathological processes. This study explores the integration of two biophysical methods: traction force microscopy (TFM) and optically detected magnetic resonance (ODMR) to concurrently assess cellular traction forces and the local relative temperature. We present a novel elastic substrate with embedded nitrogen-vacancy microdiamonds...
-
Nitrogen-incorporated boron-doped diamond films for enhanced electrochemical supercapacitor performance
PublicationThe electrochemical (EC) supercapacitor, known for its rapid charging, reliability, and versatile applications, demands optimized electrode characteristics and an understanding of their electrochemical behaviour. Although boron-doped diamond (BDD) holds promise as a supercapacitor electrode, a crucial gap exists in comprehending its material behaviour under specific growth conditions. Here, nitrogen-incorporated BDD (N-BDD) films...
-
Optical method supported by machine learning for dynamics of C‐reactive protein concentrations changes detection in biological matrix samples
PublicationIn this article we present the novel spectroscopy method supported with machine learning for real-time detection of infectious agents in wastewater. In the case of infectious diseases, wastewater monitoring can be used to detect the presence of inflammation biomarkers, such as the proposed C-reactive protein, for monitoring inflammatory conditions and mass screening during epidemics for early detection in communities of concern,...
-
Optimizing Ni–Cr patterned boron-doped diamond band electrodes: Doping effects on electrochemical efficiency and posaconazole sensing performance
PublicationThere is growing interest in developing diamond electrodes with defined geometries such as, for example, micrometer-sized electrode arrays to acquire signals for electroanalysis. For electroanalytical sensing applications, it is essential to achieve precise conductive patterns on the insulating surface. This work provides a novel approach to boron-doped diamond patterning using nichrome masking for selective seeding on an oxidized...
-
Perspectives of Fluctuation-Enhanced Gas Sensing by Two-Dimensional Materials
PublicationWe present the results of gas sensing using the fluctuation-enhanced sensing method in selected two-dimensional materials (2DMs). We claim that gas sensing selectivity can be improved further by considering semiconducting two-dimensional materials doped by noble metal nanoparticles. The 2DMs' structures exhibit some imperfections defined by their structure, occurring repeatedly there. These imperfections are adsorption-desorption...
-
Raman Scattering versus Strain Engineering in Phosphorene Nanostructures: An Ab Initio Studies
PublicationThe one-dimensional nanoribbons made from phosphorene are novel structures with great applicability potential in material science. The significant carrier mobility combined with intrinsic semiconductor properties makes them ideal for application in electronics, and they are excellent candidates for sensing material. The lack of a well–established multiscale modelling strategy for phosphorene nano optoelectronic devices is one of...
-
Recycled rubber wastes-based polymer composites with flame retardancy and electrical conductivity: Rational design, modeling and optimization
PublicationPolymer recycling techniques experience a maturity period of design and application. Rubbers comprise a high proportion of polymer wastes, highly flammable and impossible to re-melt. Polymer composites based on ground tire rubber (GTR) and ethylene-vinyl acetate copolymer (EVA) containing carbon black (CB) (1–50 phr), with variable EVA/GTR weight composition (10/90, 25/75, 50/50, 75/25 and 90/10), and processing temperature (Low:...
-
Reply to Comment on ‘Nanodiamond incorporated human liver mimicking phantoms: prospective calibration medium of magnetic resonance imaging’
PublicationDependence of the spin–lattice (T1) relaxation times on the nanodiamond concentration in human liver phantoms is discussed. Factors affecting stability and and reproducibility of these phantoms are presented. The need for comparative measurements on multiple MRI scanners for better understanding of potential variations in the obtained imaging data is emphasised.
-
Schottky Junction-Driven Photocatalytic Effect in Boron-Doped Diamond-Graphene Core–Shell Nanoarchitectures: An sp3/sp2 Framework for Environmental Remediation
PublicationSelf-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core–shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp3/sp2 hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core–shell composition...
-
Self-assembled concentric stripes of diamond particles by a pinning-depinning mechanism
PublicationWe describe the novel mechanism of spontaneous formation of the concentric stripe patterns of microdiamonds via gradual solvent evaporation from a suspension confined in a teardrop well. The self-organized patterns exhibit a series of arcs with regular spacings varying between hundreds of micrometers and millimeters. They result from an interplay between the directional forced circulation of the solvent and a stick-slip movement...
-
Simple Measurement Method for Resistive Sensors Based on ADCs of Microcontrollers
PublicationA new, complete measurement method for resistance measurement of resistive sensors for systems based on microcontrollers equipped with analog-to-digital converters (ADCs) is proposed. The interface circuit consists of only four resistors, including a resistive sensor and a reference resistor, connected directly to the microcontroller pins. It is activated only during measurements, which significantly reduces power consumption....
-
sp2-rich dendrite-like carbon nanowalls as effective electrode for environmental monitoring of explosive nitroaromatic
PublicationNitroaromatic compounds are commonly used explosive materials that pose a risk to human health and ecosystems due to their acute toxicity and carcinogenicity. Nitroaromatics have numerous pathways into the environment via discarded munitions (e.g. into the Baltic Sea after World War II), after use in mining operations, and in industrial run-off from factories producing these compounds (which are produced across the world to date)....
-
Storage of High-Strength Steel Flux-Cored Welding Wires in Urbanized Areas
PublicationThe condition of the consumables is a key factor determining the waste reduction in the welding processes and the quality of the welded joint. The paper presents the results of tests of four types of fux-cored wires dedicated for welding high-strength steels, stored for 1 month and 6 months in Poland in two urbanized areas: in a large seaside city (Gdańsk) and in Warsaw, located in the center of the country. The wires were subjected...
-
Tailoring Defects in B, N-Codoped Carbon Nanowalls for Direct Electrochemical Oxidation of Glyphosate and its Metabolites
PublicationTailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise...
-
Three modes of electrochemical impedance spectroscopy measurements performed on vanadium redox flow battery
PublicationThis article presents an innovative approach to monitor working redox flow batteries using dynamic electrochemical impedance spectroscopy, diverging from the commonly sequential impedance methods carried out under potentiostatic or galvanostatic conditions close to the open circle voltage. The authors introduce a fresh variation of dynamic impedance measurement that leverages an amplitude-modulated multi-frequency alternating current...
-
Trwałość łączeniowa i udarowa źródeł oświetlenia LED w środowiskach z występującymi zaburzeniami harmonicznymi
PublicationW artykule przedstawiono wyniki badań trwałości łączeniowej i udarowej źródeł światła LED w przypadku występowania zaburzeń harmonicznymi w napięciu zasilania. Przeprowadzone badania wskazują na znaczący wpływ odkształceń napięcia zasilania zarówno na trwałość łączeniową jak i na badania wytrzymałości udarowej przeprowadzane wg zaleceń zawartych w EN 61000-4-5.
-
Unraveling the role of boron dimers in the electrical anisotropy and superconductivity in boron-doped diamond
PublicationWe use quantum mechanics (QM) to determine the states formed by B dopants in diamond. We find that isolated B sites prefer to form BB dimers and that the dimers pair up to form tetramers (BBCBB) that prefer to aggregate parallel to the (111) surface in the <110> direction, one double layer below the H-terminated surface double layer. These tetramers lead to metallic character (Mott metal Insulator Transition) with holes in the...
-
UV-assisted fluctuation-enhanced gas sensing by ink-printed MoS2 devices
PublicationIn this work, MoS2 flakes were printed on ceramic substrates and investigated toward 1–10 ppm of nitrogen dioxide (NO2), 2–12 ppm of ammonia (NH3), and 2–12 ppm acetone (C3H6O) under UV light (275 nm). The structure of overlapping MoS2 flakes and UV light assistance affected high responsivity to NO2 when DC resistance was monitored, and superior sensitivity to NH3 was obtained from the low-frequency noise spectra. MoS2 exhibited...
-
Wpływ widma promieniowania optycznego i położenia oprawy oświetleniowej wykorzystującej źródła elektroluminescencyjne na efektywność i minimalizację zużycia energii elektrycznej w farmie wertykalnej
PublicationRozprawa poświęcona jest optymalizacji modułów oświetlenia upraw roślinnych. W rozprawie wzięto pod uwagę zarówno wpływ widma światła modułów oświetlenia na własności użytkowe roślin, jak również aspektów energetycznych (oszczędność energii elektrycznej) oraz ogólnej sprawności modułów oświetlenia. W rozprawie udowodniono, że zindywidualizowany dobór widma promieniowania optycznego oprawy oświetleniowej stosowanej do uprawy roślin...
Year 2023
-
16-kanałowy moduł LED do systemu wspomagającego rozwój roślin sterowany za pomocą Raspberry PI
PublicationOpracowywane są nowe rozkłady widma światła, które wpływają na poprawę zarówno ilości plonów i jakości dokonywanych zbiorów. W celu uproszczenia wprowadzania zmian widma w procesach badawczych oraz w celu przyspieszenia i zrównoleglenia badań w tym zakresie został opracowany niedrogi programowalny moduł LED pozwalający sterować 16 niezależnymi stałoprądowymi kanałami. Niska cena proponowanego rozwiązania oraz jeden sterownik obsługujący...
-
A New Approach to Capacitive Sensor Measurements Based on a Microcontroller and a Three-Gate Stable RC Oscillator
PublicationA complete smart capacitive sensor solution basedA complete smart capacitive sensor solution based on a microcontroller was developed. This approach includes the development of both the hardware and software. The hardware part comprises an 8-bit microcontroller equipped with two timers/counters and a three-gate stable RC relaxation oscillator. The software part handles system configuration, measurement control, communication control,...
-
Anisotropic optical properties of few-layer black phosphorus coatings: from fundamental insights to opto-electrochemical sensor design
PublicationFew-layer black phosphorus (FLBP) is characterised by a tuneable bandgap, high carrier mobility and anisotropic optical properties. It therefore has the potential to find applications in electronics and photonics. FLBP oxidizes upon exposure to air, limiting its utility in devices and components. To address this issue, the thesis introduces methods and tools developed for studying FLBP's optical parameters, with a particular emphasis...
-
Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries
PublicationOptical fiber sensorsusing low-coherence interferometry require processing ofthe output spectrum or interferogramto quickly and accurately determine the instantaneous value of the measured quantity, such as temperature.Methods based on machine learning are a good candidate for this application. The application of four such methods in an optical fiber temperature sensoris demonstrated.Using aZnO-coated...
-
Band Gap Engineering toward Semimetallic Character of Quinone-Rich Polydopamine
PublicationSemiconductor|melanin interfaces have received increasingly more attention in the fields of photocatalysis and applied electrochemistry because of their facile synthesis, unique electrical properties, and strong capability toward photosensitization. In this work, we describe the electropolymerization of quinone-rich polydopamine (PDA) on the surface of hydrogenated TiO2 nanotubes with enhanced photoactivity in the visible spectrum....
-
Boron-doped carbon nanowalls for fast and direct detection of cytochrome C and ricin by matrix-free laser desorption/ionization mass spectrometry
PublicationDetecting proteins via surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) method is still highly challenging, and only few examples of nanomaterials have been demonstrated to perform such detection so far. In this study, carbon nanowalls (CNWs), vertically aligned graphene sheet-based materials, presenting specific morphology, dimensions, and boron doping levels have shown improved performances for both qualitative...
-
Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications
PublicationThis paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials’ architecture and the receptor immobilisation procedures. The study...