Publications
Filters
total: 3159
displaying 1000 best results Help
Catalog Publications
Year 2025
-
A facile synthesis by spark plasma sintering of mobile lithium ions into oxynitride glass-ceramic matrix: Insight and perspective
PublicationThe quest for efficient energy storage solutions has led to the development of solid-state Li-on batteries (SSBs), which utilize solid-state electrolyte (SSE) materials instead of organic liquid electrolytes. This study investigates the effect of increasing Li content in a Ca11Al14Si16O49N10 glass-ceramic material on its structural, thermal, physical, and electrical properties. Spark Plasma Sintered (SPS) glass-ceramic samples...
-
Acceleration deforms exponential decays into generalized Zipf-Mandelbrot laws
PublicationAn exponentially decaying system looks as if its decay was a generalized power or double-exponential law, provided one takes into account the relativistic time dilation in a detector, the delay of the emitted signal, and the accelerations of both the source and the detector. The same mathematical formula can be found in generalizations of the Zipf-Mandelbrot law in quantitative linguistics and in the dynamics of ligand binding...
-
Calculations of Cross-Sections for Positron Scattering on Benzene
PublicationIn this work, we present a theoretical study on positron scattering by benzene molecules over a broad energy range (1–1000 eV). The aim of this work is to provide missing data from partial cross-sections for specific processes. In particular, calculations of cross-sections for direct ionization and electronic excitation were carried out for benzene molecules in the gas phase. An estimate for the cross-section for positronium formation...
-
Chemical Origins of Optically Addressable Spin States in Eu2(P2S6) and Eu2(P2Se6)
PublicationLanthanide materials with a 4f7 electron configuration (8S7/2) offer an exciting system for realizing multiple addressable spin states for qubit design. While the 8S7/2 ground state of 4f7 free ions displays an isotropic character, breaking degeneracy of this ground state and excited states can be achieved through local symmetry of the lanthanide and the choice of ligands. This makes Eu2+ attractive as it mirrors Gd3+ in exhibiting...
-
Corrosion Resistance and Structure of Cr−O−N Coatings Formed in Vacuum Arc Plasma Fluxes With PIIID
PublicationCr−O−N-based vacuum arc coatings are very promising for the wear and corrosion protection of various steel parts. The aim of the work was to determine the effect of frequency and amplitude of the pulsed bias voltage (UB) on the elemental and phase composition, mechanical, and corrosion properties of Cr−O−N coatings. They have an amorphous structure with embedded nanosized solid solution crystallites based on CrN with a cubic structure...
-
Cross-Section Calculations for Electron-Impact Ionization of Pyrimidine Molecule and Its Halogenated Derivatives: 2-Chloropyrimidine, 5-Chloropyrimidine, 2-Bromopyrimidine and 5-Bromopyrimidine
PublicationThe total cross-sections for the single electron-impact ionization of pyrimidine (C4H4N2), 2-chloropyrimidine (2-C4H3ClN2), 5-chloropyrimidine (5-C4H3ClN2), 2-bromopyrimidine (2-C4H3BrN2) and 5-bromopyrimidine (5-C4H3BrN2) molecules have been calculated with the binary-encounter-Bethe model from the ionization threshold up to 5 keV. The input data for the BEB calculations concerning electronic structure of the studied targets have...
-
Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii
PublicationIn this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 − 1 endolysin and catalytic domain...
-
Defective TiO2 for CO2 photoreduction: Influence of alkaline agent and reduction temperature modulation
PublicationThis study investigates the synthesis and characterization of Black TiO2 photocatalyst (TiO2-x) through the sol-gel method combined with NaBH4 reduction at different temperatures (350 °C, 500 °C, and 650 °C). The photocatalytic performance for CO2 reduction was evaluated, revealing that TiO2-x_500°C sample exhibited the highest efficiency. This enhanced performance is mainly attributed to a higher concentration of oxygen vacancies...
-
Dynamic Electrochemical Impedance Spectroscopy in Galvanostatic Mode as a Tool for Passive Layer State Monitoring in a Chloride Solution Under a Mechanical Load
PublicationMechanical stress is one of the factors influencing the initiation of pitting corrosion and deterioration of the protective properties of the passive layer on stainless steel. The tests carried out on AISI 304L stainless steel showed that, in the 3.5% NaCl environment for samples loaded in the elastic and plastic range, no pitting corrosion initiation was observed. Only mechanical damage of the passive layer occurred. Galvanodynamic...
-
Effect of AlF3 and KF addition on the structure and luminescent properties of P2O5 – K2O – Nb2O5 – Bi2O3 glasses doped with Eu3+
PublicationBased on the developed phosphate glasses P2O5–K2O–Bi2O3–Nb2O5 doped with Eu3+, the influence of AlF3 and KF on the structural and luminescent properties was investigated. For this purpose, three series of glasses containing from 5 to 15 mol% fluorides were synthesized. Two of the series included the KF additive, which was introduced in two ways - proportionally and disproportionately at the expense of the K2O share. The structural characterization...
-
Efficacy of modal curvature damage detection in various pre-damage data assumptions and modal identification techniques
PublicationThe efficacy of modal curvature approach for damage localization is discussed in the paper in the context of input data. Three modal identification methods, i.e., Eigensystem Realization Algorithm (ERA), Natural Excitation Technique with ERA (NExT-ERA) and Covariance Driven Stochastic Subspace Identification (SSI-Cov), and four methods of determining baseline data, i.e., real measurement of the undamaged state, analytical function,...
-
Elucidating charge transfer process and enhancing electrochemical performance of laser-induced graphene via surface engineering with sustainable hydrogel membranes: An electrochemist's perspective
PublicationLaser-induced graphene (LIG) has emerged as a promising solvent-free strategy for producing highly porous, 3D graphene structures, particularly for electrochemical applications. However, the unique character of LIG and hydrogel membrane (HM) coated LIG requires accounting for the specific conditions of its charge transfer process. This study investigates electron transfer kinetics and the electroactive surface area of LIG electrodes,...
-
Energy landscape and structural transformations of C38 penta-fullerene: The stabilizing role of octagons and insights into penta-octa-penta-fullerene
PublicationTheoretical investigations were conducted to study the stability and energy landscape of C38 penta-fullerene, a structure comprising six penta-graphene unit cells. Vibrational analysis at the B3LYP/def2SVP level revealed 18 negative frequencies, indicating the dynamic instability of penta-fullerene. Analyzing the energy profiles for these vibrational modes led to the identification of six energetically favourable isomers, featuring...
-
Enhanced electrochemical performance of sulfur-doped laser-induced graphene supercapacitors: Synergistic effects of doping and plasmochemical surface modification
PublicationThis work introduces a novel, scalable methodology for rapidly fabricating sulfur-doped laser-induced graphene with enhanced porosity and wetting characteristics, targeting advanced supercapacitor applications. An infrared laser scribing technique was employed to create a three-dimensional porous graphene network, with in-situ sulfur doping achieved through physical evaporation using powder precursor. A second-pass laser process...
-
Evaluating oxide nanoparticle exsolution on A-site deficient PrBaCo2O6-δ electrodes
PublicationNanoparticle exsolution is a powerful technique for functionalizing redox oxides in energy applications, particularly at high temperatures. It shows promise for solid oxide fuel cells and electrolyzers. However, exsolution of other chemistries like metal oxides is not well studied, and the mechanism is poorly understood. This work explores oxide exsolution in PrBa1−xCo2O6−δ (x = 0, 0.05, 0.1, 0.15) double perovskites, practiced...
-
Excited states of mono- and biruthenium(II) complexes adsorbed on nanocrystalline titanium dioxide studied by electroabsorption spectroscopy
PublicationComprehensive characterization of the lowest energy electronic excited states for mono- and binuclear Ru(II) complexes containing bipyridine ligands has been performed by electroabsorption (EA) spectroscopy. The EA spectra of Ru complexes sensitizing a TiO2 semiconductor were compared with the spectra of these complexes in the form of solid neat films, both of which parametrized within the Liptay theory. The extracted values of...
-
Experimental and Theoretical Study on Electron Interactions with Acetic Acid Molecules
PublicationThe absolute total cross section for electron collisions with acetic acid has been measured using an electrostatic electron spectrometerand linear transmission method for collision energies ranging from 0.4 to 300eV. Elastic electron scattering from acetic acid within a low-energy range has also been studied theoretically using the Schwinger multichannel and R-matrix methods, in the static-exchange and static-exchange plus polarization...
-
Investigation of structural, thermal, and electrical properties of sodium-doped oxynitride glass-ceramics
PublicationThis study aimed to investigate the influence of Na2O addition on the structural, thermal, and electrical characteristics of oxynitride glass-ceramics within the Na–K–Mg–Ca–Al–Si–O–N system. Oxynitride glass-ceramic samples were prepared via spark plasma sintering (SPS) with sodium oxide doping levels ranging from 0 wt% to 12 wt%. FESEM analysis revealed changes in sample morphology with increasing sodium content, indicating the...
-
Matrix elements for spin-orbit couplings in KRb
PublicationIn response to the need to investigate and create a reliable dataset of spin-orbit coupling matrix elements, we have extended our recent work in which we presented results for the potential energy curves and permanent and transition dipole moments in KRb. This paper presents 190 allowed spin-orbit couplings between 30 singlet and triplet +, , and electronic states of the KRb molecule. These results are crucial for accurately interpreting...
-
Mixed, quantum-classical description of electron density transfer in the collision process
PublicationIn this work, we investigate an ion-atom model describing the time-dependent evolution of electron density during the collision. For a S3+- H system, numerical simulations are based on classical trajectory calculations, and the electron density behaviour is described with the time-dependent Schrödinger equation. We apply the finite difference method to obtain quantitative insights into the charge transfer dynamics, providing detailed...
-
Mobile mutual-visibility sets in graphs
PublicationGiven a connected graph G, the mutual-visibility number of G is the cardinality of a largest set S such that for every pair of vertices x, y ∈ S there exists a shortest x, y-path whose interior vertices are not contained in S. Assume that a robot is assigned to each vertex of the set S. At each stage, one robot can move to a neighbouring vertex. Then S is a mobile mutual-visibility set of G if there exists a sequence of moves of...
-
New insights into structural, optical, electrical and thermoelectric behavior of Na0.5Bi0.5TiO3 single crystals
PublicationThe single crystals of lead-free Na0.5Bi0.5TiO3 were grown using the Czochralski method. The energy gaps determined from X-ray photoelectron spectroscopy (XPS) and optical measurements were approximately 2.92 eV. The current-voltage characteristics, depolarization current, dc (σdc) and ac (σac) electrical conductivity, and Seebeck coefficient of the crystals were investigated. The frequency/temperature-dependent electrical properties...
-
Optimal bandgap of a single-junction photovoltaic cell for the mobile Internet-of-Things
PublicationThe procedure for determining the maximum power of a single-junction photovoltaic cell operating in various types of lighting is presented. This is a key issue for photovoltaics powering the mobile Internet-of-Things (IoTs). The simulations performed are based on the detailed balance principle, without any of simplifying assumptions included in the Shockley-Queisser model. Optimal energy bandgap for diffuse solar light was found...
-
Optimizing conductivity in Na-V-Te-O glass through controlled heat treatment
PublicationSemiconducting Na2O-V2O5-TeO2 glasses with various Na2O contents were melted and subjected to controlled heating to improve conductivity. Topography analysis were performed using confocal microscopy and scanning electron microscopy on both as-quenched and heat-treated samples. X-ray diffraction confirmed the amorphous nature of the samples post-melting, with subsequent heating resulting in the formation of nanocrystallites primarily...
-
Physicochemical properties of La0.5Ba0.5Co1-xFexO3-δ (0≤x≤1) as positrode for proton ceramic electrochemical cells
PublicationWe report on essential properties of materials in the series La0.5Ba0.5Co1-xFexO3-δ as positrodes for proton ceramic electrochemical cells (PCECs). The unit cell and thermochemical expansion coefficient (TCEC) of these cubic perovskites decrease with iron content x, the TCEC of La0.5Ba0.5FeO3-δ going as low as 11·10-6 1/K. The materials behave as LaMO3 perovskites with small band gaps and Ba acting as acceptors compensated by electron...
-
Polymer-Enhanced Active Layer Crystallization in Low-Temperature Carbon-Based Perovskite Solar Cells
PublicationHigh-efficiency perovskite solar cells (PSCs) are emerging as a promising next-generation, low-cost, photovoltaic technology. A key advantage of PSCs is their compatibility with diverse manufacturing techniques, enabling the pursuit of low-cost, stable PSCs. Carbon electrodes, known for their scalability, chemical inertness, and ease of processing through screen printing, have recently seen the development of low-temperature carbon...
-
Resonant and nonresonant excitation of waves in a planar magnetosonic flow
PublicationForced propagation of perturbations in a magnetosonic wave are considered. The driving force may be caused by stimulated Mandelstam–Brillouin scattering of optic waves or by intense magnetosonic exciter. Some heating-cooling function which takes into account radiative cooling and unspecified heating is taken into consideration, as well as nonlinearity of a medium. Both these factors make the excitation particular. The analytical...
-
Restrained differential of a graph
PublicationGiven a graph $G=(V(G), E(G))$ and a vertex $v\in V(G)$, the {open neighbourhood} of $v$ is defined to be $N(v)=\{u\in V(G) :\, uv\in E(G)\}$. The {external neighbourhood} of a set $S\subseteq V(G)$ is defined as $S_e=\left(\cup_{v\in S}N(v)\right)\setminus S$, while the \emph{restrained external neighbourhood} of $S$ is defined as $S_r=\{v\in S_e : N(v)\cap S_e\neq \varnothing\}$. The restrained differential of a graph $G$ is...
-
Silver and Silver/Sodium Bisphosphonate Salts: Rare Examples of Molecular Solid Solutions and Their Biological Activity as Dual-Action Compounds
PublicationBisphosphonates (BPs) are an important treatment for osteoporosis and bone metastases due to their low toxicity, high thermostability, and the ability to inhibit bone resorption. Notably, BPs like alendronate, which contain a primary amine group, exhibit potent antiresorptive and antiangiogenic properties. Recent studies have focused on enhancing the BP properties by incorporating bioactive metals to increase their therapeutic...
-
Solvent Selection as a Key Factor in the Performance of Semitransparent Heterojunctions Composed of Hydrogenated Nanotubes and Bismuth Sulfides
PublicationResearch on titanium nanotubes modified with metal sulfides, particularly bismuth sulfide (Bi2S3), aims to create heterostructures that efficiently absorb sunlight and then separate photogenerated charge carriers, thereby enhancing the energy conversion efficiency. This study shows a key role of solvent used for sulfide and bismuth salt solutions used during successive ionic layer adsorption and reaction (SILAR) onto the morphology,...
-
Superconductivity in Ternary Mg4Pd7As6
PublicationThe synthesis and characterization of a new compound Mg4Pd7As6, which is found to be a superconductor with Tc = 5.45 K is reported. Powder X-ray diffraction confirms the U4Re7Si6 structure (space group Im-3m, no. 229) with the lattice parameter a = 8.2572(1) Å. Magnetization, specific heat, and electrical resistivity measurements indicate that it is a moderate-coupling ( = 0.72) type-II superconductor. The electronic and phonon...
-
The influence of chitosan's molecular weight, concentration, and dissolution method on the properties of electrophoretically deposited coatings on the Ti13Nb13Zr alloy surface
PublicationIn this study, the effects of molecular weight (high, medium, and low), concentration (0.1 and 0.5 %) and dissolution method (in a rarely used hydroxyacetic acid and utilizing a novel CO2 saturation) of chitosan on the microstructure, chemical composition, wettability, surface roughness, adhesion, corrosion resistance and antibacterial activity of chitosan coatings electrophoretically deposited (10 V, 1 min) on β titanium alloy...
-
Theoretical design of nanocatalysts based on (Fe2O3)n clusters for hydrogen production from ammonia
PublicationThe catalytic activities of high-spin small Fe(III) oxides have been investigated for efficient hydrogen production through ammonia decomposition, using the artificial force induced reaction method within the framework of density functional theory with the B3LYP hybrid exchange–correlation functional. Our results reveal that the adsorption free energy of NH3 on (Fe2O3 )n (n = 1–4) decreases with increasing cluster size up to n...
-
Thermoelectric and electrical properties of triple-conducting multicomponent oxides based on substituted barium cerate-zirconate
PublicationMulticomponent oxides often have exceptional thermal stability and interesting electronic properties. The present work presents the thermoelectric and electrical properties of the Ba(Zr0.2Hf0.2Sn0.2Ti0.2Fe0.2)O3−δ and Ba(Zr0.1Hf0.1Sn0.1Ti0.1Co0.1Ce0.1Bi0.1Fe0.1Y0.1Zn0.1)O3−δ multicomponent perovskites. Single-phase cubic perovskites were synthesized using the solid-state reaction method. They were characterized using X-ray...
-
Thermoelectric and electrical transport properties of mixed-conducting multicomponent oxides based on Ba(Zr,Ce)O3-δ
PublicationIn this work, the chosen physicochemical properties of single-phase multicomponent oxides BaTi1/8Fe1/8Co1/8Y1/8Zr1/8Sn1/8Ce1/8Hf1/8O3-δ and BaTi1/9Fe1/9Co1/9Y1/9Zr1/9Sn1/9Ce1/9 Hf1/9Bi1/9O3-δ were studied. The microstructure of the compounds strongly depended on the presence of bismuth in the structure. The electrical transport studies showed a level of electrical conductivity of ∼10−3 - 10−2 S/cm in the temperature range 673–1073...
-
Unlocking the electrochemical performance of glassy carbon electrodes by surface engineered, sustainable chitosan membranes
PublicationChitosan coatings, derived from crustacean shell waste, possess inherent biocompatibility and biodegradability, rendering them suitable for various biomedical and environmental applications, including electrochemical biosensing. Its amine and hydroxyl functional groups offer abundant sites for chemical modifications to boost the charge transfer kinetics and provide excellent adhesion, enabling the construction of robust electrode-coating...
Year 2024
-
A modified DC Hebb–Wagner polarization method for determining the partial protonic electrical conductivity in mixed-conducting BaGd0.3La0.7Co2O6−δ
PublicationIn this work, partial protonic conductivity in mixed conducting (BZCY721) and BaGd0.3La0.7Co2O6−d (BGLC137) was studied. For this purpose, a modified DC Hebb–Wagner polarization method was used. A four-wire type of galvanic cell as well as a suitable calculation model was applied. The method was validated using proton conducting electrolyte – BaZr0.7Ce0.2Y0.1O3−d – as a reference material. For the first time, protonic partial conductivity...
-
A note on the Morse homology for a class of functionals in Banach spaces involving the 2p-area functional
PublicationIn this paper we show how to construct Morse homology for an explicit class of functionals involving the 2p-area functional. The natural domain of definition of such functionals is the Banach space W_0^{1,2p}(\Omega), where p > n/2 and \Omega \subet R^n is a bounded domain with sufficiently smooth boundary. As W_0^{1,2p}(\Omega) is not isomorphic to its dual space,critical points of such functionals cannot be non-degenerate...
-
A semiempirical model for low energy electron–atom transport cross sections: The case of noble gases
PublicationA semiempirical approach to describe low energy electron–atom transport cross sections of easy implementation and reproduction is presented. The heart of the model is an energy independent two-parameter potential that was adjusted to reproduce the accurate total cross sections for He, Ne, Ar and Kr, measured with a threshold photoelectron source technique from meV up to 20 eV. Once the potential was conceived, the model was validated...
-
Additive manufacturing of Proton-Conducting Ceramics by robocasting with integrated laser postprocessing
PublicationA hybrid system combining robocasting and NIR laser postprocessing has been designed to fabricate layers of mixed proton-electron conducting Ba0.5La0.5Co1-xFexO3-δ ceramic. The proposed manufacturing technique allows for the control of the geometry and microstructure and shortens the fabrication time to a range of a few minutes. Using 5 W laser power and a scanning speed of 500 mm⋅s− 1, sintering of a round-shaped layer with an...
-
Algebraic periods and minimal number of periodic points for smooth self-maps of 1-connected 4-manifolds with definite intersection forms
PublicationLet M be a closed 1-connected smooth 4-manifolds, and let r be a non-negative integer. We study the problem of finding minimal number of r-periodic points in the smooth homotopy class of a given map f: M-->M. This task is related to determining a topological invariant D^4_r[f], defined in Graff and Jezierski (Forum Math 21(3):491–509, 2009), expressed in terms of Lefschetz numbers of iterations and local fixed point indices of...
-
All but one expanding Lorenz maps with slope greater than or equal to $\sqrt 2$ are leo
PublicationWe prove that with only one exception, all expanding Lorenz maps $f\colon[0,1]\to[0,1]$ with the derivative $f'(x)\ge\sqrt{2}$ (apart from a finite set of points) are locally eventually onto. Namely, for each such $f$ and each nonempty open interval $J\subset(0,1)$ there is $n\in\N$ such that $[0,1)\subset f^n(J)$. The mentioned exception is the map $f_0(x)=\sqrt{2}x+(2-\sqrt{2})/2 \pmod 1$. Recall that $f$ is an expanding Lorenz...
-
An absorbing set for the Chialvo map
PublicationThe classical Chialvo model, introduced in 1995, is one of the most important models that describe single neuron dynamics. In order to conduct effective numerical analysis of this model, it is necessary to obtain a rigorous estimate for the maximal bounded invariant set. We discuss this problem, and we correct and improve the results obtained by Courbage and Nekorkin (2010). In particular, we provide an explicit formula for an...
-
Analysis of dynamics of a map-based neuron model via Lorenz maps
PublicationModeling nerve cells can facilitate formulating hypotheses about their real behavior and improve understanding of their functioning. In this paper, we study a discrete neuron model introduced by Courbage et al. [Chaos 17, 043109 (2007)], where the originally piecewise linear function defining voltage dynamics is replaced by a cubic polynomial, with an additional parameter responsible for varying the slope. Showing that on a large...
-
Anisotropic magnetism of polymorphic ErAl3
PublicationErAl3 can form in either a trigonal () or cubic () polymorph and this paper investigates the physical properties of these polymorphs through characterizations of single crystals grown in an aluminum flux. We demonstrate that polymorph selection can be achieved based on the nominal composition of the crystal growth. Magnetic measurements confirm that both −ErAl3 and −ErAl3 order antiferromagnetically at low temperatures. −ErAl3...
-
Anisotropic, multiband, and strong-coupling superconductivity of the Pb0.64Bi0.36 alloy
PublicationThis paper presents theoretical and experimental studies on the superconductivity of Pb0.64Bi0.36 alloy, which is a prototype of strongly coupled superconductors and exhibits one of the strongest coupling under ambient pressure among the materials studied so far. The critical temperature, the specific heat in the superconducting state, and the magnetic critical fields are experimentally determined. Deviations from the single-gap...
-
Assessment of High-Temperature Oxidation Properties of 316L Stainless Steel Powder and Sintered Porous Supports for Potential Solid Oxide Cells Applications
PublicationIn this work, oxidation properties of austenitic 316L stainless steel powder and sintered porous support were investigated at the temperature range of ~600-750 °C for 100 hours in ambient air. Oxidation kinetics was determined by continuous thermogravimetry and analyzed employing parabolic rate law. It was observed that oxidation leads to the formation of an oxide scale, with substantial oxidation occurring at ≥ 650 °C in the powder....
-
Assessment of the application of selected metal-organic frameworks as advanced sorbents in passive extraction used in the monitoring of contaminants of emerging concern in surface waters
PublicationWater pollution has become a critical global concern requiring effective monitoring techniques and robust protection strategies. Contaminants of emerging concern (CECs) are increasingly detected in various water sources, with their harmful effects on humans and ecosystems continually evolving. Based on literature reports highlighting the promising sorption properties of metal-organic frameworks (MOFs), the aim of this study was...
-
BASECOL2023 scientific content
PublicationContext. The global context of making numerous data produced by researchers available requires collecting and organising the data, assigning meaningful metadata, and presenting the data in a meaningful and homogeneous way. The BASECOL database, which collects inelastic rate coefficients for application to the interstellar medium and to circumstellar and cometary atmospheres, meets those requirements. Aims. We aim to present the...
-
Calculation of electron scattering lengths on Ar, Kr, Xe, Rn and Og atoms
PublicationFocusing on the noble gases, we calculate the scattering potential using the Dirac-Coulomb Hamiltonian supplemented with a model polarization potential. We determine the scattering lengths using two methods, namely phase shifts for very small scattering energies and the shape of the wave function for zero scattering energy. We compare our theoretical electron scattering length results on Ar, Kr and Xe atoms with existing experimental...