Karol Draszawka - Science profile - MOST Wiedzy


Publication showcase

  • External Validation Measures for Nested Clustering of Text Documents

    Abstract. This article handles the problem of validating the results of nested (as opposed to "flat") clusterings. It shows that standard external validation indices used for partitioning clustering validation, like Rand statistics, Hubert Γ statistic or F-measure are not applicable in nested clustering cases. Additionally to the work, where F-measure was adopted to hierarchical classification as hF-measure, here some methods to...

  • Improving css-KNN Classification Performance by Shifts in Training Data

    - 2015

    This paper presents a new approach to improve the performance of a css-k-NN classifier for categorization of text documents. The css-k-NN classifier (i.e., a threshold-based variation of a standard k-NN classifier we proposed in [1]) is a lazy-learning instance-based classifier. It does not have parameters associated with features and/or classes of objects, that would be optimized during off-line learning. In this paper we propose...

  • Improving Effectiveness of SVM Classifier for Large Scale Data

    The paper presents our approach to SVM implementation in parallel environment. We describe how classification learning and prediction phases were pararellised. We also propose a method for limiting the number of necessary computations during classifier construction. Our method, named one-vs-near, is an extension of typical one-vs-all approach that is used for binary classifiers to work with multiclass problems. We perform experiments...

    Full text in external service

seen 387 times