ARS COMBINATORIA - Journal - Bridge of Knowledge

Search

ARS COMBINATORIA

ISSN:

0381-7032

Disciplines
(Field of Science):

  • computer and information sciences (Natural sciences)
  • mathematics (Natural sciences)

Ministry points: Help

Ministry points - current year
Year Points List
Year 2024 20 Ministry scored journals list 2024
Ministry points - previous years
Year Points List
2024 20 Ministry scored journals list 2024
2023 20 Ministry Scored Journals List
2022 40 Ministry Scored Journals List 2019-2022
2021 40 Ministry Scored Journals List 2019-2022
2020 40 Ministry Scored Journals List 2019-2022
2019 40 Ministry Scored Journals List 2019-2022
2018 15 A
2017 15 A
2016 15 A
2015 15 A
2014 15 A
2013 15 A
2012 15 A
2011 15 A
2010 13 A

Model:

Traditional

Points CiteScore:

Points CiteScore - current year
Year Points
Year 2023 0.3
Points CiteScore - previous years
Year Points
2023 0.3
2022 0.3
2021 0.5
2020 0.5
2019 0.5
2018 0.4
2017 0.6
2016 1
2015 0.7
2014 0.6
2013 0.8
2012 0.6
2011 0.7

Impact Factor:

Log in to see the Impact Factor.

Filters

total: 7

  • Category
  • Year
  • Options

clear Chosen catalog filters disabled

Catalog Journals

Year 2016
Year 2015
  • On some Zarankiewicz numbers and bipartite Ramsey Numbers for Quadrilateral
    Publication

    - ARS COMBINATORIA - Year 2015

    The Zarankiewicz number z ( m, n ; s, t ) is the maximum number of edges in a subgraph of K m,n that does not contain K s,t as a subgraph. The bipartite Ramsey number b ( n 1 , · · · , n k ) is the least positive integer b such that any coloring of the edges of K b,b with k colors will result in a monochromatic copy of K n i ,n i in the i -th color, for some i , 1 ≤ i ≤ k . If n i = m for all i , then we denote this number by b k ( m )....

    Full text available to download

  • Unicyclic graphs with equal total and total outer-connected domination numbers
    Publication

    - ARS COMBINATORIA - Year 2015

    Let G = (V,E) be a graph without an isolated vertex. A set D ⊆ V (G) is a total dominating set if D is dominating and the in- duced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total domi- nating set of G. A set D ⊆ V (G) is a total outer–connected dominating set if D is total dominating and the induced subgraph G[V (G)−D] is a connected graph. The total outer–connected...

    Full text to download in external service

Year 2011
  • On trees with double domination number equal to total domination number plus one
    Publication

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...

    Full text available to download

  • The hat problem on cycles on at least nine vertices
    Publication

    The topic is the hat problem in which each of n players is randomly fitted with a blue or red hat. Then everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The aim is to maximize the probability of winning. In this version every player...

    Full text available to download

Year 2008
  • Packing Three-Vertex Paths in 2-Connected Cubic Graphs
    Publication

    - ARS COMBINATORIA - Year 2008

    W pracy rozważano problem rozmieszczanie ścieżek P3 w 2-spójnych grafach 3-regularnych. Pokazano, że w 2-spójnym grafie 3-regularnym o n wierzchołkach można zawsze pokryć 9/11 n wierzchołków przez ścieżki P3; podano także odpowiednie oszacowania górne.

    Full text to download in external service

  • The complexity of list ranking of trees
    Publication

    Uporządkowane kolorowanie grafu polega na takim etykietowaniu jego wierzchołków, aby każda ścieżka łącząca dwa wierzchołki o tym samym kolorze zawierała wierzchołek o kolorze wyższym. Jeśli każdy wierzchołek posiada dodatkowo listę dozwolonych dla niego etykiet, to mówimy wówczas o uporządkowanym listowym kolorowaniu wierzchołków. W pracy wskazano szereg klas grafów, dla których problem jest trudny: pełne drzewa binarne, drzewa...

    Full text to download in external service

seen 899 times