ISSN:
eISSN:
Disciplines
(Field of Science):
 Biomedical engineering (Engineering and Technology)
 Civil engineering and transport (Engineering and Technology)
 Materials engineering (Engineering and Technology)
 Mechanical engineering (Engineering and Technology)
 Environmental engineering, mining and energy (Engineering and Technology)
 Astronomy (Natural sciences)
 Chemical sciences (Natural sciences)
 Physical sciences (Natural sciences)
(Field of Science)
Ministry points: Help
Year  Points  List 

Year 2021  100  Ministry Scored Journals List 2019 
Year  Points  List 

2021  100  Ministry Scored Journals List 2019 
2020  100  Ministry Scored Journals List 2019 
2019  100  Ministry Scored Journals List 2019 
2018  30  A 
2017  30  A 
2016  25  A 
2015  30  A 
2014  25  A 
2013  30  A 
2012  20  A 
2011  20  A 
2010  32  A 
2009  32  A 
2008  32  A 
Model:
Points CiteScore:
Year  Points 

Year 2019  4.7 
Year  Points 

2019  4.7 
2018  4.5 
2017  4.1 
2016  4 
2015  3.4 
2014  2.8 
2013  2.4 
2012  2.3 
2011  2.2 
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 19
Catalog Journals
Year 2021

Bending analysis of functionally graded nanoplates based on a higherorder shear deformation theory using dynamic relaxation method
PublicationIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higherorder shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...

Computational analysis of an infinite magnetothermoelastic solid periodically dispersed with varying heat flow based on nonlocal Moore–Gibson–Thompson approach
PublicationIn this investigation, a computational analysis is conducted to study a magnetothermoelastic problem for an isotropic perfectly conducting halfspace medium. The medium is subjected to a periodic heat flow in the presence of a continuous longitude magnetic field. Based on Moore–Gibson–Thompson equation, a new generalized model has been investigated to address the considered problem. The introduced model can be formulated by combining...

On nonlinear dilatational strain gradient elasticity
PublicationWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...

On thermal stability of piezoflexomagnetic microbeams considering different temperature distributions
PublicationBy relying on the Euler–Bernoulli beam model and energy variational formula, we indicate critical temperature causes in the buckling of piezoflexomagnetic microscale beams. The corresponding sizedependent approach is underlying as a second strain gradient theory. Small deformations of elastic solids are assessed, and the mathematical discussion is linear. Regardless of the pyromagnetic effects, the thermal loading of the thermal...
Year 2020

A continual model of a damaged medium used for analyzing fatigue life of polycrystalline structural alloys under thermal–mechanical loading
PublicationThe main physical laws of thermal–plastic deformation and fatigue damage accumulation processes in polycrystalline structural alloys under various regimes of cyclic thermal–mechanical loading are considered. Within the framework of mechanics of damaged media, a mathematical model is developed that describes thermal–plastic deformation and fatigue damage accumulation processes under lowcycle loading. The model consists of three...

Local buckling of composite channel columns
PublicationThe investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibrereinforced laminate. Two approaches to member orthotropic...

Nonlinear resultant theory of shells accounting for thermodiffusion
PublicationThe complete nonlinear resultant 2D model of shell thermodiffusion is developed. All 2D balance laws and the entropy imbalance are formulated by direct throughthethickness integration of respective 3D laws of continuum thermodiffusion. This leads to a more rich thermodynamic structure of our 2D model with several additional 2D fields not present in the 3D parent model. Constitutive equations of elastic thermodiffusive shells...

On FEM analysis of Cosserattype stiffened shells. Static and stability linear analysis
PublicationThe present research investigates the theory and numerical analysis of shells stiffened with beams in the framework based on the geometrically exact theories of shells and beams. Shell’s and beam’s kinematics are described by the Cosserat surface and the Cosserat rod respectively, which are consistent including deformation and strain measures. A FEM approximation of the virtual work principle leads to the conforming shell and beam...

On the effective properties of foams in the framework of the couple stress theory
PublicationIn the framework of the couple stress theory, we discuss the effective elastic properties of a metal opencell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by displacements. To this end, we performed calculations for a representative volume element which give the matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.

Selected local stability problems of channel section flanges made of aluminium alloys
PublicationThe paper addresses the issue of local buckling of compressed flanges of coldformed thinwalled channel columns and beams with nonstandard flanges composed of aluminium alloys. The material behaviour follows the Ramberg–Osgood law. It should be noted that the proposed solution may be also applied for other materials, for example: stainless steel, carbon steel. The paper is motivated by an increasing interest in nonstandard coldformed...
Year 2019

Adaptation of the arbitrary Lagrange–Euler approach to fluid–solid interaction on an example of high velocity flow over thin platelet
PublicationThe aim of this study is to analyse the behaviour of a thin plate with air flow velocities of 0.3–0.9 Ma. Data from the experiment and numerical tools were used for the analysis. For fluid–solid interaction calculations, the arbitrary Lagrange–Euler approach was used. The results of the measurements are twofold. The first one is the measurement of the flow before and after vibrating plate, i.e. pure flow plate, and the second consists...

Nonlinear finite element modeling of vibration control of plane rodtype structural members with integrated piezoelectric patches
PublicationThis paper addresses modeling and finite element analysis of the transient largeamplitude vibration response of thin rodtype structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite...

On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublicationIn this paper, we discuss wellposedness of the boundaryvalue problems arising in some “gradientincomplete” straingradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradientincomplete” straingradient elasticity for a model in which the considered strain energy...

On the correspondence between two and threedimensional Eshelby tensors
PublicationWe consider both threedimensional (3D) and twodimensional (2D) Eshelby tensors known also as energy–momentum tensors or chemical potential tensors, which are introduced within the nonlinear elasticity and the resultant nonlinear shell theory, respectively. We demonstrate that 2D Eshelby tensor is introduced earlier directly using 2D constitutive equations of nonlinear shells and can be derived also using the throughthethickness...

Robust fournode elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells
PublicationMixed 4node shell elements with the drilling rotation and Cosserattype strain measures based onthe threefield Hu–Washizu principle are proposed. In the formulation, apart from displacement and rotationfields, both strain and stress resultant fields are treated as independent. The elements are derived in the framework of a general nonlinear 6parameter shell theory dedicated to the analysis of multifold irregular shells.The...

Sensitivity analysis of free torsional vibration frequencies of thinwalled laminated beams under axial load
PublicationThe paper addresses sensitivity analysis of free torsional vibration frequencies of thinwalled beams of bisymmetric open crosssection made of unidirectional fibrereinforced laminate. The warping effect and the axial end load are taken into account. The consideration is based upon the classical theory of thinwalled beams of nondeformable crosssection. The firstorder sensitivity variation of the frequencies is derived with...

Structural response of existing spatial truss roof construction based on Cosserat rod theory
PublicationPaper presents the application of the Cosserat rod theory and newly developed associated finite elements code as the tools that support in the expertdesigning engineering practice. Mechanical principles of the 3D spatially curved rods, dynamics (statics) laws, principle of virtual work are discussed. Corresponding FEM approach with interpolation and accumulation techniques of state variables are shown that enable the formulation...
Year 2018

Pantographic metamaterials: an example of mathematically driven design and of its technological challenges
PublicationIn this paper, we account for the research efforts that have been started, for some among us, already since 2003, and aimed to the design of a class of exotic architectured, optimized (meta) materials. At the first stage of these efforts, as it often happens, the research was based on the results of mathematical investigations. The problem to be solved was stated as follows: determine the material (micro)structure governed by those...

Virtual spring damper method for nonholonomic robotic swarm selforganization and leader following
PublicationIn this paper, we demonstrate a method for selforganization and leader following of nonholonomic robotic swarm based on spring damper mesh. By selforganization of swarm robots we mean the emergence of order in a swarm as the result of interactions among the single robots. In other words the selforganization of swarm robots mimics some natural behavior of social animals like ants among others. The dynamics of twowheel robot...
seen 553 times