ISSN:
eISSN:
Disciplines
(Field of Science):
- biomedical engineering (Engineering and Technology)
- materials engineering (Engineering and Technology)
- medical biology (Medical and Health Sciences )
- pharmacology and pharmacy (Medical and Health Sciences )
- medical sciences (Medical and Health Sciences )
- forestry (Agricultural sciences)
- food and nutrition technology (Agricultural sciences)
- animal science and fisheries (Agricultural sciences)
- biotechnology (Natural sciences)
- biological sciences (Natural sciences)
- chemical sciences (Natural sciences)
(Field of Science)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2024 | 100 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2024 | 100 | Ministry scored journals list 2024 |
2023 | 100 | Ministry Scored Journals List |
2022 | 100 | Ministry Scored Journals List 2019-2022 |
2021 | 100 | Ministry Scored Journals List 2019-2022 |
2020 | 100 | Ministry Scored Journals List 2019-2022 |
2019 | 100 | Ministry Scored Journals List 2019-2022 |
2018 | 35 | A |
2017 | 35 | A |
2016 | 35 | A |
2015 | 25 | A |
2014 | 25 | A |
2013 | 20 | A |
2012 | 25 | A |
2011 | 25 | A |
2010 | 20 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 13.7 |
Year | Points |
---|---|
2023 | 13.7 |
2022 | 14.5 |
2021 | 11.6 |
2020 | 8.5 |
2019 | 6.9 |
2018 | 6 |
2017 | 5.5 |
2016 | 5.1 |
2015 | 4.7 |
2014 | 4.4 |
2013 | 3.9 |
2012 | 3.5 |
2011 | 3.5 |
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 22
Catalog Journals
Year 2024
-
Arabinoxylans: A review on protocols for their recovery, functionalities and roles in food formulations
PublicationArabinoxylans (AXs) are compounds with high nutritional value and applicability, including prebiotics or supplementary ingredients, in food manufacturing industries. Unfortunately, the recovery of AXs may require advanced separation and integrated strategies. Here, an analysis of the emerging techniques to extract AXs from cereals and their by-products is discussed. This review covers distinct methods implemented over the last...
-
Cold plasma treatment of tannic acid as a green technology for the fabrication of advanced cross-linkers for bioactive collagen/gelatin hydrogels
PublicationTannic acid (TA) is a natural compound studied as the cross-linker for biopolymers due to its ability to form hydrogen bonds. There are different methods to improve its reactivity and effectiveness to be used as a modifier for biopolymeric materials. This work employed plasma to modify tannic acid TA, which was then used as a cross-linker for fabricating collagen/gelatin scaffolds. Plasma treatment did not cause any significant...
-
Effect of the ex situ physical and in situ chemical modification of bacterial nanocellulose on mechanical properties in the context of its potential applications in heart valve design
PublicationBacterial nanocellulose (BNC) is a promising material for heart valve prostheses. However, its low strength properties limit its applicability in cardiovascular surgery. To overcome these limitations, the mechanical properties of BNC can be improved through modifications. The aim of the research was to investigate the extent to which the mechanical properties of BNC can be altered by modifying its structure during its production...
-
Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review
PublicationThe preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article...
-
Hyaluronic acid/tannic acid films for wound healing application
PublicationIn this study, thin films based on hyaluronic acid (HA) with tannic acid (TA) were investigated in three different weight ratios (80HA/20TA, 50HA/50TA, 20HA/80TA) for their application as materials for wound healing. Surface free energy, as well as their roughness, mechanical properties, water vapor permeability rate, and antioxidant activity were determined. Moreover, their compatibility with blood and osteoblast cells was investigated....
-
Injectable biocomposite cement: A dual-setting formula with magnesium potassium phosphate and κ-carrageenan hydrogel for orthopedic advancements
PublicationMagnesium phosphate-based cements are highly regarded for their bioactive properties, making them excellent candidates as bone substitutes. Despite their promising attributes, challenges such as high reaction temperature, limited injectability, and brittleness limit their application. This study introduces a dual-setting biocomposite cement, which encompasses both cement hydration and hydrogel's cross-linking. The composition features...
-
Recent advances in reinforced bioplastics for food packaging – A critical review
PublicationRecently, diversifying the material, method, and application in food packaging has been massively developed to find more environment-friendly materials. However, the mechanical and barrier properties of the bioplastics are major hurdles to expansion in commercial realization. The compositional variation with the inclusion of different fillers could resolve the lacking performance of the bioplastic. This review summarizes the various...
-
Soil burial degradation of chemically compatibilized poly(butylene adipate-co-terephthalate)/thermoplastic starch/poly(ε-caprolactone)/cellulose biocomposites
PublicationDeveloping bio-blends and biocomposites has become a widespread strategy to combat plastic pollution in line with sustainability principles and decarbonization necessities. Although chemically modified ternary and quaternary biocomposites are developing rapidly because of their broader processing and performance windows than single matrix and binary counterparts, a few have been reported about their biodegradation. Herein, diisocyanates-based...
Year 2023
-
An insight into the mixed quantum mechanical-molecular dynamics simulation of a ZnII-Curcumin complex with a chosen DNA sequence that supports experimental DNA binding investigations
PublicationAn important aspect of research pertaining to Curcumin (HCur) is the need to arrest its degradation in aqueous solution and in biological milieu. This may be achieved through complex formation with metal ions. For this reason, a complex of HCur was prepared with ZnII, that is not likely to be active in redox pathways, minimizing further complications. The complex is monomeric, tetrahedral, with one HCur, an acetate and a molecule...
-
Chitosan-based electrospun nanofibers for encapsulating food bioactive ingredients: A review
PublicationToday, society has been more aware of healthy food products and related items containing bioactive compounds, which potentially contribute to human health. Unfortunately, the long-term stability and bioactivity of biologically active compounds against environmental factors compromise their target and effective action. In this way, lab-designed vehicles, such as nanoparticles and nanofibers, provide enough properties for their preservation...
-
Recent applications and future prospects of magnetic biocatalysts
PublicationMagnetic biocatalysts combine magnetic properties with the catalytic activity of enzymes, achieving easy recovery and reuse in biotechnological processes. Lipases immobilized by magnetic nanoparticles dominate. This review covers an advanced bibliometric analysis and an overview of the area, elucidating research advances. Using WoS, 34,949 publications were analyzed and refined to 450. The prominent journals, countries, institutions, and...
-
Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology
PublicationLignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization...
Year 2022
-
Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum)
PublicationThis study aims to extract cellulose nanofibers (CNFs) from a sustainable source, i.e. millet husk, which is an agro-waste worthy of consideration. Pre-treatments such as mercerisation, steam explosion, and peroxide bleaching (chlorine-free) were applied for the removal of non-cellulosic components. The bleached millet husk pulp was subjected to acid hydrolysis (5% oxalic acid) followed by homogenization to extract CNFs. The extracted...
-
Theoretical examination of the fracture behavior of BC3 polycrystalline nanosheets: Effect of crack size and temperature
Publication2D carbon graphene nanostructures are elements of advanced materials and systems. This theoretical survey provides explanation to the mechanical and fracture behavior of mono- and polycrystalline BC3 nanosheets (denoted as MC- and PCBC3NS, respectively) as a function of temperature and the type of crack defects. The mechanical performance of PCBC3NS at elevated temperatures was monitored varying the number of grain boundaries (the...
Year 2021
-
Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers
PublicationGreen thermoplastic starch (TPS) nanocomposite films aided by cellulose nanofibers (CNFs) from Chrysopogon zizanioides roots were developed and characterized. When compared to other lignocellulosic fibers, Chrysopogon zizanioides roots revealed exceptionally high cellulose content (~48%). CNFs were separated using an environmentally friendly acid isolation technique that included three stages: (i) alkali treatment; (ii) bleaching;...
Year 2020
-
Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil
Publication -
Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil
PublicationIn this study, biocomposite films based on polyvinyl alcohol (PVA), gum arabic (GA) and chitosan (CS) incorporated with BPEO and GEO were fabricated by solvent casting method. FTIR, XRD, SEM and DSC were performed with mechanical and antimicrobial properties of PVA/GA/CS films with and without BPEO and GEO. The BPEO and GEO incorporated PVA/GA/CS films were significantly inhibited the growth of Bacillus cereus, Staphylococcus aureus,...
Year 2019
-
Chitosan and polyvinyl alcohol nanocomposites with cellulose nanofibers from ginger rhizomes and its antimicrobial activities
PublicationThe inhibitory effect of 5% GNF bionanocomposites against Bacillus cereus, Escherichia coli, Staphylococcus aureus and Salmonella typhimurium indicated good antibacterial activity of the nanocomposites due to the addition of GNF in the biopolymer matrices. The use of GNF will help to increase the economic values of agricultural waste and the characteristic properties of GNF derived bionanocomposites could be possibly used in medical...
-
Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme
PublicationThe study investigates the role of the electrostatic interactions in the fibrillation of the hen egg white lysozyme (HEWL). In order to achieve this aim the influence of the cations Na+, Mg2+ and Al3+ on the amyloid fibril formation and amorphous aggregation was tested. The amyloids are formed in the solution without added salt but the Thioflavin T fluorescence gives the false-negative result. In these conditions, the HEWL fibrils...
Year 2016
-
Rapana thomasiana hemocyanin modified with ionic liquids with enhanced anti breast cancer activity
Publication
Year 2015
Year 2014
-
Inhibition of amyloid fibril formation of hen egg white lysozyme by trimethylamine N-oxide at low pH
PublicationIn vitro inhibition of the formation of fibrous aggregates of proteins (amyloids) has gained increasing attention due to the number of diseases associated with protein misfolding and fibrillation. An interesting group of compounds for which pronounced activity against this phenomenon can be expected consists of low molecular weight substances (osmolytes) which have the ability to change protein stability. Here we investigate the...
seen 4081 times