ISSN:
eISSN:
Disciplines
(Field of Science):
- automation, electronics, electrical engineering and space technologies (Engineering and Technology)
- information and communication technology (Engineering and Technology)
- biomedical engineering (Engineering and Technology)
- environmental engineering, mining and energy (Engineering and Technology)
- computer and information sciences (Natural sciences)
- mathematics (Natural sciences)
(Field of Science)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2024 | 40 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2024 | 40 | Ministry scored journals list 2024 |
2023 | 40 | Ministry Scored Journals List |
2022 | 40 | Ministry Scored Journals List 2019-2022 |
2021 | 40 | Ministry Scored Journals List 2019-2022 |
2020 | 40 | Ministry Scored Journals List 2019-2022 |
2019 | 40 | Ministry Scored Journals List 2019-2022 |
2018 | 15 | A |
2017 | 15 | A |
2016 | 15 | A |
2015 | 15 | A |
2014 | 15 | A |
2013 | 15 | A |
2012 | 15 | A |
2011 | 15 | A |
2010 | 20 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 4.6 |
Year | Points |
---|---|
2023 | 4.6 |
2022 | 3.9 |
2021 | 2.8 |
2020 | 2.3 |
2019 | 2 |
2018 | 1.7 |
2017 | 1.5 |
2016 | 1.2 |
2015 | 1.7 |
2014 | 1.6 |
2013 | 1.7 |
2012 | 1.5 |
2011 | 1.1 |
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 15
Catalog Journals
Year 2024
-
A review on analytical models of brushless permanent magnet machines
PublicationThis study provides an in-depth investigation of the use of analytical and numerical methods in analyzing electrical machines. Although numerical models such as the finite-element method (FEM) can handle complex geometries and saturation effects, they have significant computational burdens, are time-consuming, and are inflexible when it comes to changing machine geometries or input values. Analytical models based on magnetic equivalent...
Year 2022
-
A subdomain model for armature reaction field and open‐circuit field prediction in consequent pole permanent magnet machines
PublicationIn this paper, the machine quantity, such as electromagnetic torque, self and mutual inductances, and electromotive force, is analytically calculated for non-overlapping winding consequent pole slotted machine for open-circuit field and armature reaction. The sub-domain approach of (2-D) analytical model is developed using Maxwell's equations and divide the problem into slots, slot-openings, airgap and magnets region, the magnet...
Year 2021
-
Kriging metamodels and design re‐utilization for fast parameter tuning of antenna structures
PublicationThe paper addresses the problem of computationally efficient electromagnetic (EM)‐driven design closure of antenna structures. The foundations of the presented approach are fast kriging interpolation metamodels, utilized for two purposes: (a) producing a good starting point for further parameter tuning, and (b) yielding a reasonable Jacobian matrix estimate to jump‐start the optimization procedure. The models are rendered using...
-
Low-cost multi-criterial design optimization of compact microwave passives using constrained surrogates and dimensionality reduction
PublicationDesign of contemporary microwave circuits is a challenging task. Typically, it has to take into account several performance requirements and constraints. The design objectives are often conflicting and their simultaneous improvement may not be possible; instead, compromise solutions are to be sought. Representative examples are miniaturized microwave passives where reduction of the circuit size has a detrimental effect on its electrical...
Year 2020
-
Cost‐efficient performance‐driven modelling of multi‐band antennas by variable‐fidelity electromagnetic simulations and customized space mapping
PublicationElectromagnetic (EM) simulations have become an indispensable tool in the design of contemporary antennas. EM‐driven tasks, for example, parametric optimization, entail considerable computational efforts, which may be reduced by employing surrogate models. Yet, data‐driven modelling of antenna characteristics is largely hindered by the curse of dimensionality. This may be addressed using the recently reported domain‐confinement...
-
Editorial for the special issue on advances in forward and inverse surrogate modeling for high-frequency design
PublicationThe design of modern‐day high‐frequency devices and circuits, including microwave/RF, antenna and photonic components, historically has relied on full‐wave electromagnetic (EM) simulation tools. Initially used for design verification, EM simulations are nowadays used in the design process itself, for example, for finding optimum values of geometry and/or material parameters of the structures of interest. In a growing number of...
-
Rapid redesign of multiband antennas with respect to operating conditions and material parameters of substrate
PublicationThis work addresses geometry parameter scaling of multi-band antennas for Internet of Things applications. The presented approach is comprehensive and permits re-design of the structure with respect to both the operating frequencies and material parameters of the dielectric substrate. A two-step procedure is developed with the initial design obtained from an inverse surrogate model constructed using a set of appropriately prepared...
-
Rapid tolerance‐aware design of miniaturized microwave passives by means of confined‐domain surrogates
PublicationThe effects of uncertainties, primarily manufacturing tolerances but also incomplete information about operating conditions or material parameters, can be detrimental to the performance of microwave components. Quantification of such effects is essential to ensure a meaningful evaluation of the structure, in particular, its reliability under imperfect fabrication procedures. The improvement of the circuit robustness can be achieved...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
Variable‐fidelity modeling of antenna input characteristics using domain confinement and two‐stage Gaussian process regression surrogates
PublicationThe major bottleneck of electromagnetic (EM)-driven antenna design is the high CPU cost of massive simulations required by parametric optimization, uncertainty quantification, or robust design procedures. Fast surrogate models may be employed to mitigate this issue to a certain extent. Unfortunately, the curse of dimensionality is a serious limiting factor, hindering the construction of conventional data-driven models valid over...
Year 2019
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublicationDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
A Novel Trust-Region-Based Algorithm with Flexible Jacobian Updates for Expedited Optimization of High-Frequency Structures
PublicationSimulation-driven design closure is mandatory in the design of contemporary high-frequency components. It aims at improving the selected performance figures through adjustment of the structure’s geometry (and/or material) parameters. The computational cost of this process when employing numerical optimization is often prohibitively high, which is a strong motivation for the development of more efficient methods. This is especially...
-
EM‐driven constrained miniaturization of antennas using adaptive in‐band reflection acceptance threshold
PublicationNumerical optimization of geometry parameters is a critical stage of the design process of compact antennas. It is also challenging because size reduction is constrained by the necessity of fulfilling imposed electrical performance requirements. Furthermore, full‐wave electromagnetic (EM) analysis needs to be used for reliable performance evaluation of the antenna structure, which is computationally expensive. In this paper, an...
-
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
Year 2018
-
Size reduction of ultra-wideband antennas with efficiency and matching constraints
PublicationAntenna design is a multifaceted task that involves handling of various performance figures concerning both electrical performance of the structure as well as its geometry. Simultaneous control of several objectives through rigorous optimization is very challenging and virtually impossible through conventional approaches such as parameter sweeping. In this work, we investigate size reduction of ultra‐wideband antenna structures...
seen 993 times