ISSN:
Disciplines
(Field of Science):
- biomedical engineering (Engineering and Technology)
- materials engineering (Engineering and Technology)
- mechanical engineering (Engineering and Technology)
- astronomy (Natural sciences)
- chemical sciences (Natural sciences)
- physical sciences (Natural sciences)
(Field of Science)
Ministry points: Help
Year | Points | List |
---|---|---|
Year 2025 | 140 | Ministry scored journals list 2024 |
Year | Points | List |
---|---|---|
2025 | 140 | Ministry scored journals list 2024 |
2024 | 140 | Ministry scored journals list 2024 |
2023 | 140 | Ministry Scored Journals List |
2022 | 140 | Ministry Scored Journals List 2019-2022 |
2021 | 140 | Ministry Scored Journals List 2019-2022 |
2020 | 140 | Ministry Scored Journals List 2019-2022 |
2019 | 140 | Ministry Scored Journals List 2019-2022 |
2018 | 40 | A |
2017 | 40 | A |
2016 | 40 | A |
2015 | 40 | A |
2014 | 40 | A |
2013 | 40 | A |
2012 | 40 | A |
2011 | 40 | A |
2010 | 32 | A |
Model:
Points CiteScore:
Year | Points |
---|---|
Year 2023 | 6.2 |
Year | Points |
---|---|
2023 | 6.2 |
2022 | 6.3 |
2021 | 6.7 |
2020 | 6.1 |
2019 | 6.8 |
2018 | 7.1 |
2017 | 7.3 |
2016 | 6.8 |
2015 | 6.7 |
2014 | 6.4 |
2013 | 6.9 |
2012 | 7.5 |
2011 | 6.9 |
Impact Factor:
Sherpa Romeo:
Papers published in journal
Filters
total: 9
Catalog Journals
Year 2024
-
Quantum-assisted rendezvous on graphs: explicit algorithms and quantum computer simulations
PublicationWe study quantum advantage in one-step rendezvous games on simple graphs analytically, numerically, and using noisy intermediate-scale quantum (NISQ) processors. Our protocols realise the recently discovered (Mironowicz 2023 New J. Phys. 25 013023) optimal bounds for small cycle graphs and cubic graphs. In the case of cycle graphs, we generalise the protocols to arbitrary graph size. The NISQ processor experiments realise the expected...
Year 2023
-
Entangled rendezvous: a possible application of Bell non-locality for mobile agents on networks
PublicationRendezvous is an old problem of assuring that two or more parties, initially separated, not knowing the position of each other, and not allowed to communicate, are striving to meet without pre-agreement on the meeting point. This problem has been extensively studied in classical computer science and has vivid importance to modern and future applications. Quantum non-locality, like Bell inequality violation, has shown that in many...
-
Experimental certification of more than one bit of quantum randomness in the two inputs and two outputs scenario
PublicationOne of the striking properties of quantum mechanics is the occurrence of the Bell-type non-locality. They are a fundamental feature of the theory that allows two parties that share an entangled quantum system to observe correlations stronger than possible in classical physics. In addition to their theoretical significance, non-local correlations have practical applications, such as device-independent randomness generation, providing...
Year 2022
-
Hybrid no-signaling-quantum correlations
PublicationFundamental investigations in non-locality have shown that while the no-signaling principle alone is not sufficient to single out the set of quantum non-local correlations, local quantum mechanics and no-signaling together exactly reproduce the set of quantum correlations in the two-party Bell scenario. Here, we introduce and study an intermediate hybrid no-signaling quantum set of non-local correlations that we term HNSQ in the...
-
Quantum security and theory of decoherence
PublicationWe sketch a relation between two crucial, yet independent, fields in quantum information research, viz. quantum decoherence and quantum cryptography. We investigate here how the standard cryptographic assumption of shielded laboratory, stating that data generated by a secure quantum device remain private unless explicitly published, is disturbed by the einselection mechanism of quantum Darwinism explaining the measurement process...
Year 2021
-
Simple sufficient condition for subspace to be completely or genuinely entangled
PublicationWe introduce a simple sufficient criterion, which allows one to tell whether a subspace of a bipartite or multipartite Hilbert space is entangled. The main ingredient of our criterion is a bound on the minimal entanglement of a subspace in terms of entanglement of vectors spanning that subspace expressed for geometrical measures of entanglement. The criterion is applicable to both completely and genuinely entangled subspaces. We...
Year 2020
Year 2016
-
Increased Certification of Semi-device Independent Random Numbers using Many Inputs and More Postprocessing
PublicationQuantum communication with systems of dimension larger than two provides advantages in information processing tasks. Examples include higher rates of key distribution and random number generation. The main disadvantage of using such multi-dimensional quantum systems is the increased complexity of the experimental setup. Here, we analyze a not-so-obvious problem: the relation between randomness certification and computational requirements...
-
Linear game non-contextuality and Bell inequalities—a graph-theoretic approach
PublicationWe study the classical and quantum values of a class of one-and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR(XOR-d) games we study are a subclass of the well-known linear games. We introduce a 'constraint graph' associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the...
seen 1349 times