PHYSICAL REVIEW A - Journal - Bridge of Knowledge

Search

PHYSICAL REVIEW A

ISSN:

2469-9926

eISSN:

2469-9934

Disciplines
(Field of Science):

  • Biomedical engineering (Engineering and Technology)
  • Civil engineering, geodesy and transport (Engineering and Technology)
  • Materials engineering (Engineering and Technology)
  • Mechanical engineering (Engineering and Technology)
  • Chemical sciences (Natural sciences)
  • Physical sciences (Natural sciences)

Ministry points: Help

Ministry points - current year
Year Points List
Year 2024 100 Ministry scored journals list 2024
Ministry points - previous years
Year Points List
2024 100 Ministry scored journals list 2024
2023 140 Ministry Scored Journals List
2022 100 Ministry Scored Journals List 2019-2022
2021 100 Ministry Scored Journals List 2019-2022
2020 100 Ministry Scored Journals List 2019-2022
2019 100 Ministry Scored Journals List 2019-2022
2018 35 A
2017 35 A
2016 35 A
2015 35 A
2014 35 A
2013 35 A
2012 40 A
2011 40 A
2010 32 A

Model:

Hybrid

Points CiteScore:

Points CiteScore - current year
Year Points
Year 2022 5.4
Points CiteScore - previous years
Year Points
2022 5.4
2021 5.7
2020 5.3
2019 5.3
2018 5.2
2017 5.1
2016 6.7
2015 5.3
2014 5.4
2013 5.5
2012 5.2
2011 5

Impact Factor:

Log in to see the Impact Factor.

Filters

total: 113

  • Category
  • Year
  • Options

clear Chosen catalog filters disabled

Catalog Journals

  • Dynamics of quantum entanglement
    Publication

    - PHYSICAL REVIEW A - Year 2002

    A model of discrete dynamics of entanglement of a bipartite quantum state is considered. It involves a global unitary dynamics of the system and periodic actions of local bistochastic or decaying channel. For initially pure states the decay of entanglement is accompanied by an increase of von Neumann entropy of the system. We observe and discuss revivals of entanglement due to unitary interaction of subsystems. For some mixed states...

    Full text available to download

  • Inequivalence of entanglement, steering, and Bell nonlocality for general measurements
    Publication
    • M. Quintino
    • T. Vértesi
    • D. Cavalcanti
    • R. Augusiak
    • M. Demianowicz
    • A. Acín
    • N. Brunner

    - PHYSICAL REVIEW A - Year 2015

    Einstein-Podolsky-Rosen steering is a form of inseparability in quantum theory commonly acknowledged to be intermediate between entanglement and Bell nonlocality. However, this statement has so far only been proven for a restricted class of measurements, namely, projective measurements. Here we prove that entanglement, one-way steering, two-way steering, and nonlocality are genuinely different considering general measurements,...

    Full text available to download

  • Dynamical description of quantum computing: generic nonlocality of quantumnoise
    Publication

    We develop a dynamical non-Markovian description of quantum computing in the weak-coupling limit, in the lowest-order approximation. We show that the long-range memory of the quantum reservoir (such as the 1/t4 one exhibited by electromagnetic vacuum) produces a strong interrelation between the structure of noise and the quantum algorithm, implying nonlocal attacks of noise. This shows that the implicit assumption of quantum error...

    Full text available to download

  • Quantum origins of objectivity
    Publication

    - PHYSICAL REVIEW A - Year 2015

    In spite of all of its successes, quantum mechanics leaves us with a central problem: How does nature create a bridge from fragile quanta to the objective world of everyday experience? Here we find that a basic structure within quantum mechanics that leads to the perceived objectivity is a so-called spectrum broadcast structure. We uncover this based on minimal assumptions, without referring to any dynamical details or a concrete...

    Full text available to download

  • Positron binding to alkali-metal hydrides: The role of molecular vibrations
    Publication
    • F. Gianturco
    • J. Franz
    • R. Buenker
    • H. Liebermann
    • L. Pichl
    • J. Rost
    • M. Tachikawa
    • M. Kimura

    - PHYSICAL REVIEW A - Year 2006

    The bound vibrational levels for J=0 have been computed for the series of alkali-metal hydride molecules from LiH to RbH, including NaH and KH. For all four molecules the corresponding potential-energy curves have been obtained for each isolated species and for its positron-bound complex (e+XH). It is found that the calculated positron affinity values strongly depend on the molecular vibrational state for which they are obtained...

    Full text available to download

  • Distributed correlations and information flows within a hybrid multipartite quantum-classical system
    Publication

    - PHYSICAL REVIEW A - Year 2015

    Understanding the non-Markovian mechanisms underlying the revivals of quantum entanglement in the presence of classical environments is central in the theory of quantum information. Tentative interpretations have been given by either the role of the environment as a control device or the concept of hidden entanglement. We address this issue from an information-theoretic point of view. To this aim, we consider a paradigmatic tripartite...

    Full text available to download

  • Objectivity in the non-Markovian spin-boson model
    Publication

    - PHYSICAL REVIEW A - Year 2017

    Objectivity constitutes one of the main features of the macroscopic classical world. An important aspect of the quantum-to-classical transition issue is to explain how such a property arises from the microscopic quantum theory. Recently, within the framework of open quantum systems, there has been proposed such a mechanism in terms of the so-called spectrum broadcast structures. These are multipartite quantum states of the system...

    Full text available to download

  • Quantum metrology: Heisenberg limit with bound entanglement
    Publication

    - PHYSICAL REVIEW A - Year 2015

    Quantum entanglement may provide a huge boost in the precision of parameter estimation. However, quantum metrology seems to be extremely sensitive to noise in the probe state. There is an important still open question: What type of entanglement is useful as a resource in quantum metrology? Here we raise this question in relation to entanglement distillation. We provide a counterintuitive example of a family of bound entangled states...

    Full text available to download

  • From unextendible product bases to genuinely entangled subspaces
    Publication

    - PHYSICAL REVIEW A - Year 2018

    Unextendible product bases (UPBs) are interesting mathematical objects arising in composite Hilbert spaces that have found various applications in quantum information theory, for instance in a construction of bound entangled states or Bell inequalities without quantum violation. They are closely related to another important notion, completely entangled subspaces (CESs), which are those that do not contain any fully separable pure...

    Full text available to download

  • Quantum-state transfer in spin chains via isolated resonance of terminal spins
    Publication

    - PHYSICAL REVIEW A - Year 2014

    We propose a quantum-state transfer protocol in a spin chain that requires only the control of the spins at the ends of the quantum wire. The protocol is to a large extent insensitive to inhomogeneity caused by local magnetic fields and perturbation of exchange couplings. Moreover, apart from the free evolution regime, it allows one to induce an adiabatic spin transfer, which provides the possibility of performing the transfer...

    Full text available to download

  • Positron scattering on molecular hydrogen: Analysis of experimental and theoretical uncertainties
    Publication

    - PHYSICAL REVIEW A - Year 2015

    Experiments performed in recent years on positron scattering from molecular hydrogen indicated a rise of the total cross section in the limit of zero energy, but essentially disagree on the amplitude of this rise. Mitroy and collaborators [J.-Y. Zhang et al., Phys. Rev. Lett. 103, 223202 (2009)] predicted a scattering length somewhat different from values deduced experimentally. Using a Markov chain Monte Carlo modified effective...

    Full text available to download

  • Method for universal detection of two-photon polarization entanglement
    Publication
    • K. Bartkiewicz
    • P. Horodecki
    • K. Lemr
    • A. Miranowicz
    • K. Życzkowski

    - PHYSICAL REVIEW A - Year 2015

    Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal...

    Full text available to download

  • Experimentally feasible semi-device-independent certification of four-outcome positive-operator-valued measurements
    Publication

    Recently the quantum information science community devoted a lot of attention to the theoretical and practical aspects of generalized measurements, the formalism of all possible quantum operations leading to acquisition of classical information. On the other hand, due to imperfections present in quantum devices, and limited thrust to them, a trend of formulating quantum information tasks in a semi-device-independent manner emerged....

    Full text available to download

  • Generic appearance of objective results in quantum measurements
    Publication

    - PHYSICAL REVIEW A - Year 2017

    Measurement is of central interest in quantum mechanics as it provides the link between the quantum world and the world of everyday experience. One of the features of everyday experience is its robust, objective character, contrasting the delicate nature of quantum systems. Here we analyze in a completely model-independent way the celebrated von Neumann measurement process, using recent techniques of information flow, studied in...

    Full text available to download

  • Elemental and tight monogamy relations in nonsignaling theories
    Publication

    - PHYSICAL REVIEW A - Year 2014

    Physical principles constrain the way nonlocal correlations can be distributed among distant parties. These constraints are usually expressed by monogamy relations that bound the amount of Bell inequality violation observed among a set of parties by the violation observed by a different set of parties. We prove here that much stronger monogamy relations are possible for nonsignaling correlations by showing how nonlocal correlations...

    Full text available to download

  • Sensitivity of entanglement decay of quantum-dot spin qubits to the external magnetic field
    Publication

    - PHYSICAL REVIEW A - Year 2014

    We study the decay of entanglement of quantum-dot electron-spin qubits under hyperfine-interaction-mediated decoherence.We show that two-qubit entanglement of a single entangled initial state may exhibit decay characteristic of two disentanglement regimes in a single sample, when the externalmagnetic field is changed. The transition is manifested by the suppression of time-dependent entanglement oscillations which are superimposed...

    Full text available to download

  • Photofragmentation of tetrahydrofuran molecules in the vacuum-ultraviolet region via superexcited states studied by fluorescence spectroscopy
    Publication
    • T. Wasowicz
    • A. Kivimäki
    • M. Dampc
    • M. Coreno
    • M. de
    • M. Zubek
    • T. Wąsowicz

    - PHYSICAL REVIEW A - Year 2011

    Full text to download in external service

  • Low-energy electron scattering from molecular hydrogen: Excitation of the X1Σg+ to b3Σu+ transition
    Publication
    • M. Zawadzki
    • R. Wright
    • G. Dolmat
    • M. Martin
    • B. Diaz
    • L. Hargreaves
    • D. Coleman
    • D. Fursa
    • M. Zammit
    • L. Scarlett... and 4 others

    - PHYSICAL REVIEW A - Year 2018

    We present time-of-flight differential cross-section measurements and convergent close-coupling calculations of differential cross sections for the electron-impact excitation of the X 1 g + → b 3 u + transition in molecular hydrogen. A part of this work was recently published [M. Zawadzki et al., Phys. Rev. A 97, 050702(R) (2018)]. In this work, agreement between theory and experiment is excellent overall, and marks a transition...

    Full text available to download

  • Free randomness amplification using bipartite chain correlations
    Publication
    • A. Grudka
    • K. Horodecki
    • M. Horodecki
    • P. Horodecki
    • M. Pawłowski
    • R. Ramanathan

    - PHYSICAL REVIEW A - Year 2014

    A direct analysis of the task of randomness amplification from Santha-Vazirani sources using the violation of the chained Bell inequality is performed in terms of the convex combination of no-signaling boxes required to simulate quantum violation of the inequality. This analysis is used to find the exact threshold value of the initial randomness parameter from which perfect randomness can be extracted in the asymptotic limit of...

    Full text available to download

  • Complementarity between entanglement-assisted and quantum distributed random access code
    Publication

    - PHYSICAL REVIEW A - Year 2017

    Collaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific...

    Full text available to download

  • Electron collisions with cyanoacetylene HC3N : Vibrational excitation and dissociative electron attachment
    Publication
    • M. Ranković
    • P. Nag
    • M. Zawadzki
    • L. Ballauf
    • J. Žabka
    • M. Polášek
    • J. Kočišek
    • J. Fedor

    - PHYSICAL REVIEW A - Year 2018

    We experimentally probe electron collisions with HC3N in the energy range from 0 to 10 eV with the focus on vibrational excitation and dissociative electron attachment. The vibrational excitation cross sections show a number of resonances which are mode specific: the two dominant π∗ resonances are visible in the excitation of all the vibrational modes; however, broad σ ∗ resonances are visible only in certain bond-stretching vibrational...

    Full text available to download

  • Long-distance quantum communication over noisy networks without long-time quantum memory
    Publication
    • P. Mazurek
    • A. Grudka
    • M. Horodecki
    • P. Horodecki
    • J. Łodyga
    • Ł. Pankowski
    • A. Przysiężna

    - PHYSICAL REVIEW A - Year 2014

    The problem of sharing entanglement over large distances is crucial for implementations of quantum cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324 (2008)] the authors put forward an important isomorphism between storing quantum information in a dimension D and transmission...

    Full text available to download

  • Time-of-flight electron scattering from molecular hydrogen: Benchmark cross sections for excitation of the X1Σ+g→b3Σ+u transition
    Publication
    • M. Zawadzki
    • R. Wright
    • G. Dolmat
    • M. Martin
    • L. Hargreaves
    • D. Fursa
    • M. Zammit
    • L. Scarlett
    • J. Tapley
    • J. Savage... and 2 others

    - PHYSICAL REVIEW A - Year 2018

    The electron impact X1Σ+g to b3Σ+u transition in molecular hydrogen is one of the most important dissociation pathways to forming atomic hydrogen atoms, and is of great importance in modeling astrophysical and industrial plasmas where molecular hydrogen is a substantial constituent. Recently it has been found that the convergent close-coupling (CCC) cross sections of Zammit et al. [Phys. Rev. A 95, 022708 (2017)] are up to a factor...

    Full text available to download

  • Larmor diamagnetism and Van Vleck paramagnetism in relativistic quantumtheory: the Gordon decomposition approach
    Publication

    We consider a charged Dirac particle bound in a scalar potential perturbed by a classical magnetic field derivable from a vector potential A(r). Using a procedure based on the Gordon decomposition of a field-induced current, we identify diamagnetic and paramagnetic contributions to the second-order perturbationtheory correction to the particle's energy. In contradiction to earlier findings, based on the sum-over-states approach,...

    Full text available to download

  • Dynamic polarizability of the relativistic hydrogenlike atom: Application of the Sturmian expansion of the Dirac-Coulomb Green function
    Publication

    We utilize the Sturmian expansion of the Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997)] to obtain components of the dynamic dipole polarizability tensor of the relativistic hydrogenlike atom in the ground state. It is found that the tensor may be expressed in terms of two independent quantities: a scalar polarizability and a vector polarizability, the latter being of the relativistic origin. In the static...

    Full text available to download

  • Reexamination of the decoherence of spin registers
    Publication

    - PHYSICAL REVIEW A - Year 2019

    We revisit the decoherence process of a multiqubit register interacting with a thermal bosonic bath. We generalize the previous studies by considering not only the register’s behavior but also a part of its environment. In particular, we are interested in information flow from the register to the environment, which we describe using recently introduced multipartite quantum state structures called spectrum broadcast structures....

    Full text available to download

  • System information propagation for composite structures

    We study in details decoherence process of a spin register, coupled to a spin environment. We use recently developed methods of information transfer study in open quantum systems to analyze information flow between the register and its environment. We show that there are regimes when not only the register decoheres effectively to a classical bit string, but this bit string is redundantly encoded in the environment, making it available...

    Full text available to download

  • Progress towards a unified approach to entanglement distribution
    Publication

    - PHYSICAL REVIEW A - Year 2015

    Entanglement distribution is key to the success of secure communication schemes based on quantum mechanics, and there is a strong need for an ultimate architecture able to overcome the limitations of recent proposals such as those based on entanglement percolation or quantum repeaters. In this work we provide a broad theoretical background for the development of such technologies. In particular, we investigate the question of whether...

    Full text available to download

  • Constructing genuinely entangled multipartite states with applications to local hidden variables and local hidden states models
    Publication

    - PHYSICAL REVIEW A - Year 2018

    Building upon the results of R. Augusiak et al. [Phys. Rev. Lett. 115, 030404 (2015)] we develop a general approach to the generation of genuinely entangled multipartite states of any number of parties from genuinely entangled states of a fixed number of parties, in particular, the bipartite entangled ones. In our approach, certain isometries whose output subspaces are either symmetric or genuinely entangled in some multipartite...

    Full text available to download

  • Robust amplification of Santha-Vazirani sources with three devices
    Publication

    - PHYSICAL REVIEW A - Year 2015

    We demonstrate that amplification of arbitrarily weak randomness is possible using quantum resources. We present a randomness amplification protocol that involves Bell experiments. We find a Bell inequality which can amplify arbitrarily weak randomness and give a detailed analysis of the protocol involving it. Our analysis includes finding a sufficient violation of Bell inequality as a function of the initial quality of randomness....

    Full text available to download

  • Entangled Histories vs. the Two-State-Vector Formalism - Towards a Better Understanding of Quantum Temporal Correlations
    Publication

    The Two-State-Vector formalism and the Entangled Histories formalism are attempts to betterunderstand quantum correlations in time. Both formalisms share some similarities, but they are notidentical, having subtle differences in their interpretation and manipulation of quantum temporalstructures. However, the main objective of this paper is to prove that, with appropriately definedscalar products, both formalisms can be...

    Full text available to download

  • Electron scattering from 2-methyl–1,3-butadiene,C5H8, molecules: Role of methylation

    We report cross-section results from experimental and theoretical investigations into electron collisions with the 2-methyl–1,3-butadiene [C5H8] molecule. The current results are compared with our previous results for the 1,3-butadiene [C4H6] molecule, a structural homologue of 2-methyl–1,3-butadiene, to investigate how the methylation (the substitution of hydrogen atom by a methyl group) affects the shape and/or magnitude of the...

    Full text to download in external service

  • Magnetizability of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    The Sturmian expansion of the generalized Dirac--Coulomb Green function [R.\/~Szmytkowski, J.\ Phys.\ B 30 (1997) 825; erratum 30 (1997) 2747] is exploited to derive a closed-form expression for the magnetizability of an arbitrary discrete state of the relativistic one-electron atom with a point-like, spinless and motionless nucleus of charge $Ze$. The result has the form of a double finite sum involving the generalized hypergeometric...

    Full text available to download

  • Entanglement of genuinely entangled subspaces and states: Exact, approximate, and numerical results
    Publication

    - PHYSICAL REVIEW A - Year 2019

    Genuinely entangled subspaces (GESs) are those subspaces of multipartite Hilbert spaces that consist only of genuinely multiparty entangled pure states. They are natural generalizations of the well-known notion of completely entangled subspaces, which by definition are void of fully product vectors. Entangled subspaces are an important tool of quantum information theory as they directly lead to constructions of entangled states,...

    Full text available to download

  • Magnetic-field-induced electric quadrupole moments for relativistic hydrogenlike atoms: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function we derive a closed-form expression for the electric quadrupole moment induced...

    Full text available to download

  • Computed vibrational excitation ofCF4by low-energy electrons and positrons: Comparing calculations and experiments
    Publication
    • J. Franz
    • I. Baccarelli
    • S. Caprasecca
    • F. Gianturco

    - PHYSICAL REVIEW A - Year 2009

    Quantum calculations for the excitation of the asymmetric modes of the CF4 target gas, ν3 and ν4, by impact of low-energy electrons and positrons are carried out in the energy range around 1 eV and are compared with recent experimental findings. The similarities and differences between the two types of projectiles, and the two different modes, are analyzed and discussed vis à vis the present accord with the experimental results.

    Full text available to download

  • Information content of systems as a physical principle
    Publication

    - PHYSICAL REVIEW A - Year 2017

    To explain the conceptual gap between classical and quantum and other, hypothetical descriptions of the world, several principles have been proposed. So far, all these principles have not explicitly included the uncertainty relation. Here we introduce an information content principle ( ICP ) which represents a constrained uncertainty principle. The principle, by taking into account the encoding and decoding properties of a single physical...

    Full text to download in external service

  • Trade-offs in multiparty Bell-inequality violations in qubit networks
    Publication

    - PHYSICAL REVIEW A - Year 2018

    Two overlapping bipartite binary input Bell inequalities cannot be simultaneously violated as this would contradict the usual no-signalling principle. This property is known as monogamy of Bell inequality violations and generally Bell monogamy relations refer to trade-offs between simultaneous violations of multiple inequalities. It turns out that multipartite Bell inequalities admit weaker forms of monogamies that allow for violations...

    Full text available to download

  • Redundant information encoding in QED during decoherence
    Publication

    - PHYSICAL REVIEW A - Year 2018

    Broadly understood decoherence processes in quantum electrodynamics, induced by neglecting either the radiation [L. Landau, Z. Phys. 45, 430 (1927)] or the charged matter [N. Bohr and L. Rosenfeld, K. Danske Vidensk. Selsk, Math.-Fys. Medd. XII, 8 (1933)], have been studied from the dawn of the theory. However, what happens in between, when a part of the radiation may be observed, as is the case in many real-life situations, has...

    Full text to download in external service

  • Static electric multipole susceptibilities of the relativistic hydrogenlike atom in the ground state: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function
    Publication

    The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite $2^{L}$ polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 825 (1997); erratum R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 2747 (1997)] is used to derive closed-form analytical...

    Full text available to download

  • Dynamical nonlocality in quantum time via modular operators
    Publication

    - PHYSICAL REVIEW A - Year 2022

    We formalize the concept of the modular energy operator within the Page and Wootters timeless framework. As a result, this operator is elevated to the same status as the more studied modular operators of position and momentum. In analogy with dynamical nonlocality in space associated with the modular momentum, we introduce and analyze the nonlocality in time associated with the modular energy operator. Some applications of our...

    Full text available to download

  • Device-independent quantum key distribution based on measurement inputs
    Publication

    - PHYSICAL REVIEW A - Year 2015

    We provide an analysis of a family of device-independent quantum key distribution (QKD) protocols that has the following features. (a) The bits used for the secret key do not come from the results of the measurements on an entangled state but from the choices of settings. (b) Instead of a single security parameter (a violation of some Bell inequality) a set of them is used to estimate the level of trust in the secrecy of the key....

    Full text available to download

  • Blurred quantum Darwinism across quantum reference frames

    Quantum Darwinism describes objectivity of quantum systems via their correlations with their environment--information that hypothetical observers can recover by measuring the environments. However, observations are done with respect to a frame of reference. Here, we take the formalism of [Giacomini, Castro-Ruiz, & Brukner. Nat Commun 10, 494 (2019)], and consider the repercussions on objectivity when changing quantum reference...

    Full text available to download

  • Closed-form expression for the magnetic shielding constant of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac–Coulomb Green function

    We present analytical derivation of the closed-form expression for the dipole magnetic shielding constant of a Dirac one-electron atom being in an arbitrary discrete energy eigenstate. The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, uniform, and time independent. With respect to the atomic nucleus we assume that it is pointlike, spinless, motionless, and of charge Ze. Calculations are...

    Full text available to download

  • Experimental test of nonclassicality with arbitrarily low detection efficiency
    Publication

    - PHYSICAL REVIEW A - Year 2020

    We theoretically introduce and experimentally demonstrate the realization of a nonclassicality test that allows for arbitrarily low detection efficiency without invoking an extra assumption of independence of the devices. Our test and its implementation is set in a prepare-and-measure scenario with an upper limit on the classical communication capacity of the channel through which the systems are communicated. The essence for our...

    Full text available to download

  • Negative result about the construction of genuinely entangled subspaces from unextendible product bases
    Publication

    Unextendible product bases (UPBs) provide a versatile tool with various applications across different areas of quantum information theory. Their comprehensive characterization is thus of great importance and has been a subject of vital interest for over two decades now. An open question asks about the existence of UPBs, which are genuinely unextendible, i.e., they are not extendible even with biproduct vectors. In other words,...

    Full text available to download

  • Elastic scattering of electrons from chloroform
    Publication
    • B. Hlousek
    • M. F. Martin
    • M. Khakoo
    • M. Zawadzki
    • G. M. Moreira
    • L. S. Maioli
    • M. Bettega
    • L. Machado
    • V. A. S. d. Mata
    • A. J. da Silva... and 3 others

    - PHYSICAL REVIEW A - Year 2019

    We present experimental and theoretical cross sections for elastic electron scattering from CHCl3. This is an important target because of its relevance to environmental chemistry and the plasma etching industry as a source of chlorine radicals. The experimental results were obtained at incident electron energies ranging from 0.5 to 800 eV in the 10deg-130deg scattering angle range. Theoretically, the scattering cross sections in...

    Full text available to download

  • Bound on Bell inequalities by fraction of determinism and reverse triangle inequality
    Publication
    • P. Joshi
    • K. Horodecki
    • M. Horodecki
    • P. Horodecki
    • R. Horodecki
    • B. Li
    • S. Szarek
    • T. Szarek

    - PHYSICAL REVIEW A - Year 2015

    It is an established fact that entanglement is a resource. Sharing an entangled state leads to nonlocal correlations and to violations of Bell inequalities. Such nonlocal correlations illustrate the advantage of quantum resources over classical resources. In this paper, we quantitatively study Bell inequalities with 2 × n inputs. As found in Gisin et al. [Int. J. Quantum. Inform. 05, 525 (2007)], quantum mechanical correlations...

    Full text available to download

  • Experimental determination of H2 mass stopping powers for low-energy electrons
    Publication

    - PHYSICAL REVIEW A - Year 2019

    We present experimental mass stopping powers of electrons in gaseous H2 obtained with an electron time- of-flight spectrometer, for the incident electron energy range of 11 to 25 eV. In our procedure, the average energy loss is derived from conversion of the measured electron time-of-flight spectra into equivalent electron energy-loss spectra. Our present results are compared with the only available experimental measurement and...

    Full text available to download

  • Second-order Stark effect and polarizability of a relativistic two-dimensional hydrogenlike atom in the ground state
    Publication

    The second-order Stark effect for a planar Dirac one-electron atom in the ground state is analyzed within the framework of the Rayleigh-Schrödinger perturbation theory, with the use of the Sturmian series expansion of the generalized Dirac-Coulomb Green's function. A closed-form analytical expression for the static dipole polarizability of that system is found. The formula involves the generalized hypergeometric function ${}_{3}F_{2}$...

    Full text available to download

seen 1113 times