prof. dr hab. Marek Czachor
Publications
Filters
total: 54
Catalog Publications
Year 2024
-
Hidden Tensor Structures
PublicationAny single system whose space of states is given by a separable Hilbert space is automatically equipped with infinitely many hidden tensor-like structures. This includes all quantum mechanical systems as well as classical field theories and classical signal analysis. Accordingly, systems as simple as a single one-dimensional harmonic oscillator, an infinite potential well, or a classical finite-amplitude signal of finite duration...
-
Imitating Quantum Probabilities: Beyond Bell’s Theorem and Tsirelson Bounds
PublicationLocal hidden-variable model of singlet-state correlations discussed in M. Czachor, Acta Phys. Polon. A 139, 70, is shown to be a particular case of an infinite hierarchy of local hidden-variable models based on an infinite hierarchy of calculi. Violation of Bell-type inequalities can be interpreted as a `confusion of languages' problem, a result of mixing different but neighboring levels of the hierarchy. Mixing of non-neighboring...
Year 2023
-
A Note on Fractional Curl Operator
PublicationIn this letter, we demonstrate that the fractional curl operator, widely used in electromagnetics since 1998, is essentially a rotation operation of components of the complex Riemann–Silberstein vector representing the electromagnetic field. It occurs that after the wave decomposition into circular polarisations, the standard duality rotation with the angle depending on the fractional order is applied to the left-handed basis vector...
-
Contra Bellum: Bell's Theorem as a Confusion of Languages
PublicationBell's theorem is a conflict of mathematical predictions formulated within an infinite hierarchy of mathematical models. Inequalities formulated at level k ∈ Z are violated by probabilities at level k+1. We are inclined to think that k=0 corresponds to the classical world, while k=1 — to the quantum one. However, as the k=0 inequalities are violated by k=1 probabilities, the same relation holds between k=1 inequalities violated...
-
Cosmic-Time Quantum Mechanics and the Passage-of-Time Problem
PublicationA new dynamical paradigm merging quantum dynamics with cosmology is discussed.
Year 2021
-
Arithmetic Loophole in Bell's Theorem: Overlooked Threat to Entangled-State Quantum Cryptography
PublicationBell’s theorem is supposed to exclude all local hidden-variable models of quantum correlations. However,an explicit counterexample shows that a new class of local realistic models, based on generalized arith-metic and calculus, can exactly reconstruct rotationally symmetric quantum probabilities typical oftwo-electron singlet states. Observable probabilities are consistent with the usual arithmetic employedby macroscopic observers...
-
Non-Newtonian Mathematics Instead of Non-Newtonian Physics: Dark Matter and Dark Energy from a Mismatch of Arithmetics
PublicationNewtonian physics is based on Newtonian calculus applied to Newtonian dynamics. New paradigms such as ‘modified Newtonian dynamics’ (MOND) change the dynamics, but do not alter the calculus. However, calculus is dependent on arithmetic, that is the ways we add and multiply numbers. For example, in special relativity we add and subtract velocities by means of addition β1⊕β2=tanh(tanh−1(β1)+tanh−1(β2)), although multiplication β1⊙β2=tanh(tanh−1(β1)⋅tanh−1(β2)),...
Year 2020
-
A Loophole of All ‘Loophole-Free’ Bell-Type Theorems
PublicationBell’s theorem cannot be proved if complementary measurements have to be represented by random variables which cannot be added or multiplied. One such case occurs if their domains are not identical. The case more directly related to the Einstein–Rosen–Podolsky argument occurs if there exists an ‘element of reality’ but nevertheless addition of complementary results is impossible because they are represented by elements from different...
-
Non-Diophantine Arithmetics in Mathematics, Physics and Psychology
PublicationFor a long time, all thought there was only one geometry — Euclidean geometry. Nevertheless, in the 19th century, many non-Euclidean geometries were discovered. It took almost two millennia to do this. This was the major mathematical discovery and advancement of the 19th century, which changed understanding of mathematics and the work of mathematicians providing innovative insights and tools for mathematical research and applications...
-
Unifying Aspects of Generalized Calculus
PublicationNon-Newtonian calculus naturally unifies various ideas that have occurred over the years in the field of generalized thermostatistics, or in the borderland between classical and quantum information theory. The formalism, being very general, is as simple as the calculus we know from undergraduate courses of mathematics. Its theoretical potential is huge, and yet it remains unknown or unappreciated.
Year 2019
-
Swapping Space for Time: An Alternative to Time-Domain Interferometry
PublicationYoung's double-slit experiment [1] requires two waves produced simultaneously at two different points in space. In quantum mechanics the waves correspond to a single quantum object, even as complex as a big molecule. An interference is present as long as one cannot tell for sure which slit is chosen by the object. The more we know about the path, the worse the interference. In the paper we show that quantum mechanics allows for...
-
Time travel without paradoxes: Ring resonator as a universal paradigm for looped quantum evolutions
PublicationA ring resonator involves a scattering process where a part of the output is fed again into the input. The same formal structure is encountered in the problem of time travel in a neighborhood of a closed timelike curve (CTC). We know how to describe quantum optics of ring resonators, and the resulting description agrees with experiment. We can apply the same formal strategy to any looped quantum evolution, in particular to the...
-
Waves Along Fractal Coastlines: From Fractal Arithmetic to Wave Equations
PublicationBeginning with addition and multiplication intrinsic to a Koch-type curve, we formulate and solve wave equation describing wave propagation along a fractal coastline. As opposed to examples known from the literature, we do not replace the fractal by the continuum in which it is embedded. This seems to be the first example of a truly intrinsic description of wave propagation along a fractal curve. The theory is relativistically...
Year 2018
-
Simple Fractal Calculus from Fractal Arithmetic
PublicationNon-Newtonian calculus that starts with elementary non-Diophantine arithmetic operations of a Burgin type is applicable to all fractals whose cardinality is continuum. The resulting definitions of derivatives and integrals are simpler from what one finds in the more traditional literature of the subject, and they often work in the cases where the standard methods fail. As an illustration, we perform a Fourier transform of a real-valued...
Year 2017
-
If Gravity is Geometry, is Dark Energy just Arithmetic?
PublicationArithmetic operations (addition, subtraction, multiplication, division), as well as the calculus they imply, are non-unique. The examples of four-dimensional spaces, R^4 and (−L/2,L/2)^4, are considered where different types of arithmetic and calculus coexist simultaneously. In all the examples there exists a non-Diophantine arithmetic that makes the space globally Minkowskian, and thus the laws of physics are formulated in terms...
-
Information Processing and Fechner’s Problem as a Choice of Arithmetic
PublicationFechner’s law and its modern generalizations can be regarded as manifestations of alternative forms of arithmetic, coexisting at stimulus and sensation levels. The world of sensations may be thus described by a generalization of the standard mathematical calculus.
Year 2016
-
Crystallization of space: Space-time fractals from fractal arithmetic
PublicationFractals such as the Cantor set can be equipped with intrinsic arithmetic operations (addition, subtraction, multiplication, division) that map the fractal into itself. The arithmetics allows one to define calculus and algebra intrinsic to the fractal in question, and one can formulate classical and quantum physics within the fractal set. In particular, fractals in space-time can be generated by means of homogeneous spaces associated...
-
Fourier transforms on Cantor sets: A study in non-Diophantine arithmetic and calculus
PublicationFractals equipped with intrinsic arithmetic lead to a natural definition of differentiation, integration, and complex structure. Applying the formalism to the problem of a Fourier transform on fractals we show that the resulting transform has all the required basic properties. As an example we discuss a sawtooth signal on the ternary middle-third Cantor set. The formalism works also for fractals that are not self-similar.
-
Relativity of arithmetic as a fundamental symmetry of physics
PublicationArithmetic operations can be defined in various ways, even if one assumes commutativity and associativity of addition and multiplication, and distributivity of multiplication with respect to addition. In consequence, whenever one encounters ‘plus’ or ‘times’ one has certain freedom of interpreting this operation. This leads to some freedom in definitions of derivatives, integrals and, thus, practically all equations occurring in...
-
Wavepacket of the Universe and its Spreading
PublicationWavepackets in quantum mechanics spread and the Universe in cosmology expands. We discuss a formalism where the two effects can be unified. The basic assumption is that the Universe is determined by a unitarily evolving wavepacket defined on space-time. Space-time is static but the Universe is dynamic. Spreading analogous to expansion known from observational cosmology is obtained if one regards time evolution as a dynamical process...
Year 2014
-
Quantum structure in competing lizard communities
PublicationAlmost two decades of research on applications of the mathematical formalism of quantum theory as a modeling tool in domains different from the micro-world has given rise to many successful applications in situations related to human behavior and thought, more specifically in cognitive processes of decision-making and the ways concepts are combined into sentences. In this article, we extend this approach to animal behavior, showing...
Year 2013
-
Systems, environments, and soliton rate equations: A non-Kolmogorovian framework for population dynamics
PublicationSoliton rate equations are based on non-Kolmogorovian models of probability and naturally include autocatalytic processes. The formalism is not widely known but has great unexplored potential for applications to systems interacting with environments. Beginning with links of contextuality to non- Kolmogorovity we introduce the general formalism of soliton rate equations and work out explicit examples of subsystems interacting with...
Year 2011
-
A comparison of geometric analogues of holographic reduced representations, original holographic reduced representations and binary spatter codes
PublicationGeometric Analogues of Holographic Reduced Representations (GA HRR) employ role-filler binding based on geometric products. Atomic objects are real-valued vectors in n-dimensional Euclidean space and complex statements belong to a hierarchy of multivectors. The paper reports a battery of tests aimed at comparison of GA HRR with Holographic Reduced Representation (HRR) and Binary Spatter Codes (BSC). Firstly, we perform a test of...
-
Distributed Representations Based on Geometric Algebra: the Continuous Model
PublicationAuthors revise the concept of a distributed representation of data as well as two previously developed models: Holographic Reduced Representation (HRR) and Binary Spatter Codes (BSC). A Geometric Analogue (GAc - ''c'' stands for continuous as opposed to its discrete version) of HRR is introduced - it employs role-filler binding based on geometric products. Atomic objects are real-valued vectors in n-dimensional Euclidean space...
-
Vacuum Rabi oscillation in nonzero-temperature open cavity
PublicationPorównania teorii oscylacji Rabiego z eksperymentem [M. Wilczewski, M. Czachor, Phys. Rev. A 79, 0333836 (2009)] sugerują, że parametry wnęki doświadczeniu z dużą ilością fotonów mogą być znacznie mniejsze niż te otrzymane dla stanów prawie próżniowych. W tym kontekście pokazujemy, że wniosek pozostaje bez zmian, nawet jeśli do opisu stanu początkowego wnęki zastosuje się bardziej realistyczny opis.
Year 2010
-
Two-spinors, oscillator algebras, and qubits: aspects of manifestly covariant approach to relativistic quantum information
PublicationThe first part of the paper reviews applications of 2-spinor methods to relativistic qubits (analogies between tetrads in Minkowski space and 2-qubit states, qubits defined by means of null directions and their role for elimination of the Peres-Scudo-Terno phenomenon, advantages and disadvantages of relativistic polarization operators defined by the Pauli-Lubanski vector, manifestly covariant approach to unitary representations...
Year 2009
-
Automatic Regularization by Quantization in Reducible Representations of CCR: Point-Form Quantum Optics with Classical Sources
PublicationElectromagnetic fields are quantized in a manifestly covariant way by means ofa class of reducible "center-of-mass N-representations" of the algebra of canonical commutationrelations (CCR). The four-potential Aa(x) transforms in these representations as aHermitian four-vector field in Minkowski four-position space (without change of gauge), butin momentum space it splits into spin-1 massless photons and two massless scalars. Whatwe...
-
Geometric analogue of holographic reduced representation
PublicationHolographic reduced representations (HRRs) are distributed representations of cognitive structuresbased on superpositions of convolution-bound n-tuples. Restricting HRRs to n-tuples consisting of 1,one reinterprets the variable binding as a representation of the additive group of binary n-tupleswith addition modulo 2. Since convolutions are not defined for vectors, the HRRs cannot be directlyassociated with geometric structures....
-
Teleportation of geometric structures in 3D
PublicationThe simplest quantum teleportation algorithms can be represented in geometric terms in spaces of dimensions 3 (for real state vectors) and 4 (for complex state vectors). The geometric representation is based on geometric-algebra coding, a geometric alternative to the tensor-product coding typical of quantum mechanics. We discuss all the elementary ingredients of the geometric version of the algorithm: geometric analogs of states...
-
Theory versus experiment for vacuum Rabi oscillations in lossy cavities
PublicationThe 1996 experiment by Brune et al. [Phys. Rev. Lett. 76, 1800 (1996)] on vacuum Rabi oscillation is analyzed by means of alternative models of atom-reservoir interaction. Agreement with experimental Rabi oscillation data can be obtained if one defines jump operators in the dressed-state basis and takes into account thermal fluctuations between dressed states belonging to the same manifold. Such low-frequency transitions could...
-
Theory versus experiment for vacuum Rabi oscillations in lossy cavities. II. Direct test of uniqueness of vacuum
PublicationThe paper continues the analysis of vacuum Rabi oscillations we started in part I [Phys. Rev. A 79, 033836 (2009)]. Here we concentrate on experimental consequences for cavity QED of two different classes of representations of harmonic-oscillator Lie algebras. The zero-temperature master equation, derived in part I for irreducible representations of the algebra, is reformulated in a reducible representation that models electromagnetic...
Year 2008
-
A macroscopic device for quantum computation
PublicationPrzeanalizowano mechaniczny model kwantowego układu 2-bitowego. Model jest zilustrowany algorytmem Deutscha i Arvinda.
-
Teleportation seen from spacetime: on 2-spinor aspects of quantum information processing
PublicationZastosowanie formalizmu 2-spinowego do kwantowego przetwarzania informacji zilustrowane przykładem teleportacji i relatywistycznej korelacji błędu.
-
Tensor-product versus geometric-product coding
PublicationKodowanie przy pomocy iloczynów tensorowych, a kodowanie przy pomocy iloczynów geometrycznych. Formalizm jest zilustrowany przy pomocy paru przykładów.
Year 2007
-
Cartoon computation: Quantum-like algorithms without quantum mechanics
PublicationZaproponowano formalizm prowadzący do algorytmów analogicznych do kwantowych, lecz wykorzystujący jedynie struktury geometryczne. Jako przykład sformułowano odpowiednik kwantowego algorytmu Deutscha-Jozsy.
-
Cavity-QED tests of representations of canonical commutation relations employed in field quantization
PublicationDane eksperymentalne dotyczące oscylacji Rabiego porównano z opisem teoretycznym w ramach alternatywnych sformułowań elektrodynamiki kwantowej. Okazało się, iż eksperyment nie jest w stanie rozróżnić opisu standardowego od nowego sformułowania opartego o redukowalne reprezentacje CCR. Zaproponowano nowy eksperyment, którego wynik mógłby być rozstrzygający.
-
Elementary gates for cartoon computation
PublicationSformułowano elementarne bramki kwantowe, pozwalające tłumaczyć algorytmy kwantowe na język geometryczny.
-
Macroscopic models for quantum systems and computers
PublicationOpisano układy makroskopowe realizujące dwubitowe operacje kwantowe.
-
Regularization as quantization in reducible representations of CCR
PublicationOpis kwantowego pola elektromagnetycznego przy pomocy redukowalnych reprezentacji CCR prowadzi do automatycznej regularyzacji teorii. Sformułowanie jest jawnie relatywistycznie współzmiennicze. Przeanalizowano - jako przykład - pola kwantowe wytwarzane przez klasyczne źródła.
-
Two-state dynamics for replicating two-strand systems
PublicationDynamika dwustanowa została zastosowana do opisów układów dwuniciowych, analogicznych do DNA.
Year 2006
-
Abstract DNA-type systems
PublicationAbstrakcyjny system typu DNA jest definiowany przez zestaw nieliniowych kinetycznych równań z wielomianowymi nieliniowościami, które przyjmują rozwiązania solitonowe związane z geometrią helis. Zestaw równań pozwala na dwie różne reprezentacje Laxa: forma von Neumanna i Darboux-kowariantna para Laxa. Wyjaśniamy dlaczego nie-Kolmogorowskie modele prawdopodobieństwa pojawiające się w kinetyce solitonowej są naturalnie związane z...
-
Degree of entaglement as a physically ill-posted problem: The case of entaglement with vacuum
PublicationAnalizujemy przypadek fotonu w superpozycji różnych modów i zadajemy pytanie o stopień ich splątania z próżnią. Problem okazuje się być źle postawiony, gdyż nie wiemy którą reprezentację algebry CCR wybrać dla kwantowania pola. Gdy dokonamy wyboru jednoznacznie możemy rozwiązać zagadnienie splątania. Tak więc trudność nie leży w matematyce lecz w fizyce problemu.
-
Entagled-state cryptographic protocol that remains secure even if nonlocal hidden variables exist and can be measured with arbitrary precision
PublicationStandardowe protokoły kryptografii kwantowej nie są bezpieczne jeśli zakłada się, że nielokalne ukryte zmienne istnieją i mogą być zmierzone z dowolną dokładnością. Bezpieczeństwo można odzyskać jeśli jedna z komunikujących się części przypadkowo przełącza się między dwoma standardowymi protokołami.
Year 2005
-
Comment on ''Quantum Entropy and Special Relativity''
PublicationKomentarz na temat publikacji Peresa, Scudo i Terno.
Year 2004
-
Quantum aspects of semantic analysis and symbolic artificial intelligence.
PublicationNowoczesne podejścia do analizy semantycznej, jeśli przeformułować je w język przestrzeni Hilberta, ujawniają formalne struktury znane z mechaniki kwantowej. Podobna sytuacja występuje w rozproszonych reprezentacjach struktur poznawczych rozwijanych na użytek sieci neuronowych. W pracy przyglądamy się różnicom i podobieństwom owych teorii do kwantowej teorii informacji.
-
Reducible representations of CAR and CCR with possible applications to field quantization.
PublicationRedukowalne reprezentacje CAR i CCR zastosowane są do drugiej kwantyzacji pól Diraca i Maxwella. Powstające w ten sposób operatory pola są rzeczywiście operatorami, a nie dystrybucjami o wartościach operatorowych. Przykłady pokazują, że formalizm taki może prowadzić do skończonej teorii pola.
Year 2003
-
Darboux covariant equations of von Neumann type and their generalization.
PublicationOpisano nową klasę uogólnionych równań von Neumanna całkowalnych przez transformację Darboux. Uogólnienie zawiera jako przypadki szczególne nieliniowe równanie von Neumanna, r. Nahma, kratę Tody i inne.
-
Quantum morphogenesis: A variation on Thom`s catastrophe theory.
PublicationZaproponowano nowy opis morfogenezy na poziomie kwantowym w oparciu o rozwiązania samo przełączające nieliniowego równania von Neumanna.
-
Relativistic Bennett Brassard cryptographic scheme, relativistic errors,and how to correct them.
PublicationWprowadzono opis polaryzacji liniowej oparty o główne zerowe kierunki transformacji Lorentza. Formalizm ten został zastosowany do problemu eliminacji błędów w kryptografii kwantowej.
-
States of light via reducible quantization.
PublicationRelatywistyczne sformułowanie kwantowania pola opartego o redukowalne reprezentacje kanonicznych związków komutacyjnych. Konstrukcja stanów fokowskich i koherentnych. Analiza automatycznej regularyzacji rozbieżności w podczerwieni. Twierdzenie o granicy termodynamicznej.
seen 12874 times