Michał Joachimczak
Employment
Contact
- No data
Publication showcase
-
Evolving gene regulatory networks controlling foraging strategies of prey and predators in an artificial ecosystem
Co-evolution of predators and prey is an example of an evolutionary arms race, leading in nature to selective pressures in positive feedback. We introduce here an artificial life ecosystem in which such positive feedback can emerge. This ecosystem consists of a 2-dimensional liquid environment and animats controlled by evolving artificial gene regulatory networks encoded in linear genomes. The genes in the genome encode chemical...
-
Evolution of artificial single-cell organisms foraging for resources in a 3-dimensional environment
Foraging for resources is a simple cognitive task that even one-celled biological organisms can ac- complish. We present an Artificial Life system in which artificial unicellular organisms (animats) forage for food in a 3-dimensional simulated liquid environment. The movement of animats is controlled by evolving artificial gene regulatory networks encoded in linear genomes. When an animat consumes enough food, it produces offspring...
-
Evolution of chemotaxis in single-cell artificial organisms
The model of a liquid two-dimensional environment, which is based on physics of diffusion, allows us to simulate the diffusion of morphogenes. Artificial organisms move using a chemotaxis reacting to concentration difference. Organisms are controlled by a gene regulatory network coded in a linear genome and reproduce by division. We made a lot of experiments presenting organisms’ behaviour in various environment conditions. We...
seen 523 times