
dr inż. Paweł Wityk
Social media
Publication showcase
-
Mechanisms of Damage to DNA Labeled with Electrophilic Nucleobases Induced by Ionizing or UV Radiation
Hypoxia—a hallmark of solid tumors—makes hypoxic cells radioresistant. On the other hand, DNA, the main target of anticancer therapy, is not sensitive to the near UV photons and hydrated electrons, one of the major products of water radiolysis under hypoxic conditions. A possible way to overcome these obstacles to the efficient radio- and photodynamic therapy of cancer is to sensitize the cellular DNA to electrons and/or ultraviolet...
-
A first-principles study of electron attachment to the fully hydrated bromonucleobases
Degradation mechanism of four brominated nucleobases (BrX), potential DNA radiosensitizers, is studied in explicit water solution, using ab initio molecular dynamics. Several fs long dynamics is needed to localize an electron on the nucleobase. Produced by electron attachment BrX anion radical degrades through the bromide anion abstraction, barrier-free (purines) or with low barrier (pyrimidines), to a reactive nucleobase radical....
-
5-Thiocyanato-2′-deoxyuridine as a possible radiosensitizer: electron-induced formation of uracil-C5-thiyl radical and its dimerization
In this work, we have synthesized 5-thiocyanato-2′-deoxyuridine (SCNdU) along with the C6-deuterated nucleobase 5-thiocyanatouracil (6-D-SCNU) and studied their reactions with radiation-produced electrons. ESR spectra in γ-irradiated nitrogen-saturated frozen homogeneous solutions (7.5 M LiCl in H2O or D2O) of these compounds show that electron-induced S–CN bond cleavage occurs to form a thiyl radical (dU-5-S˙ or 6-D-U-5-S˙) and...
Obtained scientific degrees/titles
-
2018-09-26
Obtained science degree
dr Chemical sciences (Natural sciences)Uniwersytet Gdański
seen 948 times