3D Vision System for a Robotic Arm Based on Equal Baseline Camera Array - Publication - MOST Wiedzy


3D Vision System for a Robotic Arm Based on Equal Baseline Camera Array


This paper presents a lightweight 3D vision system called Equal Baseline Camera Array (EBCA). EBCA can work in different light conditions and it can be applied for measuring large range of distances. The system is a useful alternative to other known distance measuring devices such as structured-light 3D scanners, time-of-flight cameras, Light Detection and Ranging (LIDAR) devices and structure from motion techniques. EBCA can be mounted on a robotic arm without putting significant load on its construction. EBCA consists of a central camera and a ring of side cameras. The system uses stereo matching algorithms to acquire disparity maps and depth maps similarly as in case of using stereo cameras. This paper introduces methods of adapting stereo matching algorithms designed for stereo cameras to EBCA. The paper also presents the analysis of local, semi-global and global stereo matching algorithms in the context of the EBCA usage. Experiments show that, on average, results obtained from EBCA contain 37.49% less errors than the results acquired from a single stereo camera used in the same conditions.


  • 0


  • 0

    Web of Science

  • 0



artykuły w czasopismach
Published in:
ISSN: 0921-0296
Publication year:
Bibliographic description:
Kaczmarek A.: 3D Vision System for a Robotic Arm Based on Equal Baseline Camera Array// JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS -Vol. 99, (2020), s.13-28
Digital Object Identifier (open in new tab) 10.1007/s10846-019-01117-8
Bibliography: test
  1. Pérez, L., Rodríguez,İ., Rodríguez, N., Usamentiaga, R., García, D.F.: Robot guidance using machine vision techniques in industrial environments: A comparative review. Sensors 16(3), 335 (2016) open in new tab
  2. Jang, W., Je, C., Seo, Y., Lee, S.W.: Structured-light stereo: Comparative analysis and integration of structured-light and active stereo for measuring dynamic shape. Opt. Lasers Eng. 51(11), 1255-1264 (2013) open in new tab
  3. Eichhardt, I., Chetverikov, D., Jankó, Z.: Image-guided tof depth upsampling: a survey. Mach. Vis. Appl. 28(3), 267-282 (2017) open in new tab
  4. Tse, RO.C., Gold, C., Kidner, D.: Advances in 3D Geoinformation Systems, chapter 3D City Modelling from LIDAR Data, pp. 161-175. Springer, Berlin (2008) open in new tab
  5. Kazmi, W., Foix, S., Alenya, G.: Plant Leaf Imaging Using Time of Flight Camera under Sunlight, Shadow and Room Conditions. In: 2012 IEEE International Symposium On Robotic and Sensors Environments (ROSE), pp. 192-197 (2012) open in new tab
  6. Venkataraman, K., Lelescu, D., Duparré, J., McMahon, A., Molina, G., Chatterjee, P., Mullis, R., Nayar, S.: Picam: An ultra-thin high performance monolithic camera array. ACM Trans. Graph. 32(6), 166:1-166:13 (2013) open in new tab
  7. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 1, pp. 519-528 (2006) open in new tab
  8. Okutomi, M., Kanade, T.: A multiple-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353-363 (1993) open in new tab
  9. Park, J.-I., Inoue, S.: Acquisition of sharp depth map from multiple cameras. Signal Process. Image Commun. 14(1-2), 7-19 (1998) open in new tab
  10. Kaczmarek, A.L.: Improving depth maps of plants by using a set of five cameras. J. Electron. Imaging 24(2), 023018 (2015) open in new tab
  11. Kaczmarek, A.L.: Stereo vision with equal baseline multiple camera set (ebmcs) for obtaining depth maps of plants. Comput. Electron. Agricult. 135, 23-37 (2017) open in new tab
  12. Kaczmarek, A.L.: Stereo Camera Upgraded to Equal Baseline Multiple Camera Set (Ebmcs). In: 2017 3DTV Conference: The True Vision -Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1-4 (2017) open in new tab
  13. Bi, Z.M., Wang, L.ihui.: Advances in 3d data acquisition and processing for industrial applications. Robot. Comput.-Integr. Manuf. 26(5), 403-413 (2010) open in new tab
  14. Daneshmand, M., Bilici, O., Bolotnikova, A., Anbarjafari, G.: Medical robots with potential applications in participatory and opportunistic remote sensing: A review. Robot. Auton. Syst. 95, 160-180 (2017) open in new tab
  15. Ludvigsen, M., Sørensen, A.J.: Towards integrated autonomous underwater operations for ocean mapping and monitoring. Ann. Rev. Control 42, 145-157 (2016) open in new tab
  16. Jiang, W., Wang, Z.: Calibration of visual model for space manipulator with a hybrid lm-ga algorithm. Mech. Syst. Signal Process. 66-67, 399-409 (2016) open in new tab
  17. Murphy, R.R., Kravitz, J., Stover, S.L., Shoureshi, R.: Mobile robots in mine rescue and recovery. IEEE Robot. Autom. Mag. 16(2), 91-103 (2009) open in new tab
  18. Fjerdingen, S.A., Bjerkeng, M., Transeth, A.A., Kyrkjebø, E., Røyrøy, A.: A learning camera platform for remote operations with industrial manipulators. IFAC Proc. Vol. 45(8), 39-46 (2012). 1st IFAC Workshop on Automatic Control in Offshore Oil and Gas Production open in new tab
  19. Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., Kurita, M.: Evaluation of a strawberry- harvesting robot in a field test. Biosyst. Eng. 105(2), 160-171 (2010) open in new tab
  20. Baeten, J., Donné, K., Boedrij, S., Beckers, W., Claesen, E.: Autonomous fruit picking machine: A robotic apple harvester. In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics, volume 42 of Springer Tracts in Advanced Robotics, pp. 531- 539. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540- 75404-6 51 open in new tab
  21. van Henten, E.J., Hemming, J., van Tuijl, B.A.J., Kornet, J.G., Meuleman, J., Bontsema, J., van Os, E.A.: An autonomous robot for harvesting cucumbers in greenhouses. Auton. Robot. 13(3), 241-258 (2002) open in new tab
  22. Muscato, G., Prestifilippo, M., Abbate, N., Rizzuto, I.: A prototype of an orange picking robot: past history, the new robot and experimental results. Indust. Robot: Int. J. 32(2), 128-138 (2005) open in new tab
  23. Wan, W., Lu, F., Wu, Z., Harada, K.: Teaching robots to do object assembly using multi-modal 3d vision. Neurocomputing 259(Supplement C), 85-93 (2017). Multimodal Media Data Understanding and Analytics open in new tab
  24. Sanchez-Lopez, J.R., Marin-Hernandez, A., Palacios-Hernandez, E.R., Rios-Figueroa, H.V., Marin-urias, L.F.: A real-time 3d manipulator, vol. 7. 3rd Iberoamerican Conference on Electronics Engineering and Computer Science CIIECC (2013) open in new tab
  25. Shin, B.-S., Mou, X., Mou, W., Wang, H.: Vision-based navigation of an unmanned surface vehicle with object detection and tracking abilities. Mach. Vis. Appl. 29(1), 95-112 (2018) open in new tab
  26. Jia, B., Chen, J., Zhang, K.: Recursive drivable road detection with shadows based on two-camera systems. Mach. Vis. Appl. 28(5), 509-523 (2017) open in new tab
  27. Lin, L., Song, Y., Yang, Y., Feng, H., Cheng, Y., Pan, H.: Computer vision system r&d for east articulated maintenance arm robot. Fusion Eng. Des. 100, 254-259 (2015) open in new tab
  28. Plebe, A., Grasso, G.: Localization of spherical fruits for robotic harvesting. Mach. Vis. Appl. 13(2), 70-79 (2001) open in new tab
  29. Palli, G., Moriello, L., Scarcia, U., Melchiorri, C.: An underwater robotic gripper with embedded force/torque wrist sensor. IFAC- PapersOnLine 50(1), 11209-11214 (2017). 20th IFAC World Congress open in new tab
  30. Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., Belin,É., Chapeau-Blondeau, F.: On the use of depth camera for 3d phenotyping of entire plants. Comput. Electron. Agricult. 82, 122-127 (2012) open in new tab
  31. Bradski, G.R., Opencv, A.K. Learning Gary Rost, 1st edn. O'Reilly Media, Inc., Newton (2008)
  32. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1), 7-42 (2002). Microsoft Research Technical Report MSR- TR-2001-81, November 2001 open in new tab
  33. Menze, M., Heipke, C., Geiger, A.: Joint 3D Estimation of Vehicles and Scene Flow. In: ISPRS Workshop on Image Sequence Analysis (ISA) (2015) open in new tab
  34. Menze, M., Heipke, C., Geiger, A.: Object scene flow ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) (2018) open in new tab
  35. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328-341 (2008) open in new tab
  36. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222-1239 (2001) open in new tab
  37. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, ., Levoy, M.: High performance imaging using large camera arrays. In: ACM SIGGRAPH 2005 open in new tab
  38. Papers, SIGGRAPH'05, pp. 765-776. ACM, New York (2005) open in new tab
  39. Fehrman, B., McGough, J.: Depth Mapping Using a Low-Cost Camera Array. In: 2014 Southwest Symposium on Image Analysis and Interpretation, pp. 101-104 (2014) open in new tab
  40. Fehrman, B., McGough, J.: Handling Occlusion with an Inexpensive Array of Cameras. In: 2014 Southwest Symposium on Image Analysis and Interpretation, pp. 105-108 (2014) open in new tab
  41. Kaczmarek, A.L.: Influence of aggregating window size on disparity maps obtained from equal baseline multiple camera set (ebmcs) Choraś, R.S. (ed.) Springer International Publishing, Cham (2017) open in new tab
  42. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling. IEEE Trans. Pattern Anal. Mach. Intell. 20(4), 401-406 (1998) open in new tab
  43. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068-1080 (2008) open in new tab
  44. Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B (Methodol.) 48(3), 259-302 (1986) open in new tab
  45. Tappen, M.F., Freeman, W.T.: Comparison of Graph Cuts with Belief Propagation for Stereo, Using Identical Mrf Parameters. In: 2003. Proceedings. Ninth IEEE International Conference On Computer Vision, pp. 900-906 Vol.2 (2003) open in new tab
  46. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Map estimation via agreement on trees: message-passing and linear programming. IEEE Trans. Inf. Theory 51(11), 3697-3717 (2005) open in new tab
  47. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568-1583 (2006) open in new tab
  48. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) Computer Vision ACCV 2010, 10th Asian Conference on Computer Vision, Queenstown, New Zealand, November 8- 12, 2010, Revised Selected Papers, Part I, volume 6492 of Lecture Notes in Computer Science, pp. 25-38. Springer, Berlin (2011) open in new tab
Verified by:
Gdańsk University of Technology

seen 95 times

Recommended for you

Meta Tags