A Highly Selective Biosensor Based on Peptide Directly Derived from the HarmOBP7 Aldehyde Binding Site - Publication - MOST Wiedzy

Search

A Highly Selective Biosensor Based on Peptide Directly Derived from the HarmOBP7 Aldehyde Binding Site

Abstract

This paper presents the results of research on determining the optimal length of a peptide chain to eectively bind octanal molecules. Peptides that map the aldehyde binding site in HarmOBP7 were immobilized on piezoelectric transducers. Based on computational studies, four Odorant Binding Protein-derived Peptides (OBPPs) with dierent sequences were selected. Molecular modelling results of ligand docking with selected peptides were correlated with experimental results. The use of low-molecular synthetic peptides, instead of the whole protein, enabled the construction OBPPs-based biosensors. This work aims at developing a biomimetic piezoelectric OBPPs sensor for selective detection of octanal. Moreover, the research is concerned with the ligand binding anity depending on dierent peptides’ chain lengths. The authors believe that the chain length can have a substantial influence on the type and eectiveness of peptide–ligand interaction. A confirmation of in silico investigation results is the correlation with the experimental results, which shows that the highest anity to octanal is exhibited by the longest peptide (OBPP4 – KLLFDSLTDLKKKMSEC-NH2). We hypothesized that the binding of long chain aldehydes to the peptide, mimicking the binding site of HarmOBP7, induced a conformational change in the peptide deposited on a selected transducer. The constructed OBPP4-based biosensors were able to selectively bind octanal in the gas phase. It was also shown that the sensors were characterized by high selectivity with respect to octanal, as well as to acetaldehyde and benzaldehyde. The results indicate that the OBPP4 peptide, mimicking the binding domain in the Odorant Binding Protein, can provide new opportunities for the development of biomimicking materials in the field of odor biosensors.

Citations

  • 4

    CrossRef

  • 4

    Web of Science

  • 4

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
SENSORS no. 19,
ISSN: 1424-8220
Language:
English
Publication year:
2019
Bibliographic description:
Tomasz W., Szulczyński B., Wojciechowski M., Kamysz W., Gębicki J.: A Highly Selective Biosensor Based on Peptide Directly Derived from the HarmOBP7 Aldehyde Binding Site// SENSORS -Vol. 19,iss. 20 (2019), s.4293-
DOI:
Digital Object Identifier (open in new tab) 10.3390/s19194284
Bibliography: test
  1. Wasilewski, T.; Gębicki, J.; Kamysz, W. Bioelectronic nose: Current status and perspective. Biosens. Bioelectron. 2017, 87, 480-494. [CrossRef] [PubMed] open in new tab
  2. McGann, J.P. Poor human olfaction is a 19th-century myth. Science 2017, 356. [CrossRef] [PubMed] open in new tab
  3. Wasilewski, T.; Gębicki, J.; Kamysz, W. Advances in olfaction-inspired biomaterials applied to bioelectronic noses. Sens. Actuators B Chem. 2018, 257, 511-537. [CrossRef] open in new tab
  4. Wasilewski, T.; Szulczyński, B.; Kamysz, W.; Gębicki, J.; Namieśnik, J. Evaluation of three peptide immobilization techniques on a qcm surface related to acetaldehyde responses in the gas phase. Sensors 2018, 18, 3942. [CrossRef] [PubMed] open in new tab
  5. Cao, J.; Deng, L.; Zhu, X.-M.; Fan, Y.; Hu, J.-N.; Li, J.; Deng, Z.-Y. Novel Approach To Evaluate the Oxidation State of Vegetable Oils Using Characteristic Oxidation Indicators. J. Agric. Food Chem. 2014, 62, 12545-12552. [CrossRef] [PubMed] open in new tab
  6. Zepka, L.Q.; Wagner, R.; Jacob-Lopes, E.; Daltoé, M.M.; Santos, A.B.; Torri, A.F.; Donadel, J.Z.; Queiroz, M.I. Study of the Volatile Compounds Useful for the Characterization of Frozen Anchoita (Engraulis anchoita) by SPME-GC-MS. In Flavour Science; Elsevier: Amsterdam, The Netherlands, 2014; pp. 169-172. [CrossRef] open in new tab
  7. Fuchs, P.; Loeseken, C.; Schubert, J.K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 2010, 126, 2663-2670. [CrossRef] open in new tab
  8. Sankaran, S.; Khot, L.R.; Panigrahi, S. Biology and applications of olfactory sensing system: A review. Sens. Actuators B Chem. 2012, 171-172, 1-17. [CrossRef] open in new tab
  9. Valle, M. Bioinspired sensor systems. Sensors 2011, 11, 10180-10186. [CrossRef] open in new tab
  10. Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 2006, 63, 1658-1676. [CrossRef] open in new tab
  11. Khadka, R.; Aydemir, N.; Carraher, C.; Hamiaux, C.; Colbert, D. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants. Biosens. Bioelectron. 2019, 126, 207-213. [CrossRef] open in new tab
  12. Hurot, C.; Brenet, S.; Buhot, A.; Barou, E.; Belloir, C.; Briand, L. Highly sensitive olfactory biosensors for the detection of volatile organic compounds by surface plasmon resonance imaging. Biosens. Bioelectron. 2019, 123, 230-236. [CrossRef] [PubMed] open in new tab
  13. Kotlowski, C.; Larisika, M.; Guerin, P.M.; Kleber, C.; Kröber, T.; Mastrogiacomo, R.; Nowak, C.; Pelosi, P.; Schütz, S.; Schwaighofer, A.; et al. Chemical Fine discrimination of volatile compounds by graphene-immobilized odorant-binding proteins. Sens. Actuators B Chem. 2018, 256, 564-572. [CrossRef] open in new tab
  14. Boyle, S.M.; McInally, S.; Ray, A. Expanding the olfactory code by in silico decoding of odor-receptor chemical space. Elife 2013. [CrossRef] [PubMed] open in new tab
  15. Pelosi, P.; Zhu, J.; Knoll, W. Odorant-Binding Proteins as Sensing Elements for Odour Monitoring. Sensors 2018, 18, 3248. [CrossRef] [PubMed] open in new tab
  16. Barbosa, A.J.M.; Oliveira, A.R.; Roque, A.C.A. Protein-and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol. 2018, 36, 1244-1258. [CrossRef] [PubMed] open in new tab
  17. Man, O.; Gilad, Y.; Lancet, D. Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci. 2004, 13, 240-254. [CrossRef] [PubMed] open in new tab
  18. Nakamura, C.; Miyake, J. Chapter 8. Combinatorially Developed Peptide Receptors for Biosensors. In Combinatorial Methods for Chemical and Biological Sensors, GE Global; Potyrailo, A.R., Ed.; Springer: Niskayuna, NY, USA, 2016. open in new tab
  19. Boon, C.L.; Frost, D.; Chakrabartty, A. Identification of stable helical bundles from a combinatiorial library of amphipathic peptides. Biopolym. Pept. Sci. Sect. 2004, 76, 244-257. [CrossRef] [PubMed] open in new tab
  20. Meyer, S.C.; Gaj, T.; Ghosh, I. Highly selective cyclic peptide ligands for neutravidin and avidin identified by phage display. Chem. Biol. Drug Des. 2006, 68, 3-10. [CrossRef] [PubMed] open in new tab
  21. Liu, Q.; Wang, J.; Boyd, B.J. Peptide-based biosensors. Talanta 2015, 136, 114-127. [CrossRef] [PubMed] open in new tab
  22. Ruotolo, B.T.; Verbeck, G.F.; Thomson, L.M.; Gillig, K.J.; Russell, D.H. Observation of conserved solution-phase secondary structure in gas-phase tryptic peptides. J. Am. Chem. Soc. 2002, 124, 4214-4215. [CrossRef] open in new tab
  23. Farrar, D.; West, J.E.; Busch-Vishniac, I.J.; Yu, S.M. Fabrication of polypeptide-based piezoelectric composite polymer film. Scr. Mater. 2008, 59, 1051-1054. [CrossRef] Sensors 2019, 19, 4284 12 of 13 open in new tab
  24. Lu, H.-H.H.; Rao, Y.K.; Wu, T.-Z.Z.; Tzeng, Y.-M.M. Direct characterization and quantification of volatile organic compounds by piezoelectric module chips sensor. Sens. Actuators B Chem. 2009, 137, 741-746. [CrossRef] open in new tab
  25. Diociaiuti, M.; Gaudiano, M.C.; Malchiodi-Albedi, F. The slowly aggregating salmon Calcitonin: A useful tool for the study of the amyloid oligomers structure and activity. Int. J. Mol. Sci. 2011, 12, 9277-9295. [CrossRef] [PubMed] open in new tab
  26. Sankaran, S.; Panigrahi, S.; Mallik, S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens. Bioelectron. 2011, 26, 3103-3109. [CrossRef] [PubMed] open in new tab
  27. Son, M.; Kim, D.; Kang, J.; Lim, J.H.; Lee, S.H.; Ko, H.J.; Hong, S.; Park, T.H. Bioelectronic Nose Using Odorant Binding Protein-Derived Peptide and Carbon Nanotube Field-Effect Transistor for the Assessment of Salmonella Contamination in Food. Anal. Chem. 2016, 88, 11283-11287. [CrossRef] [PubMed] open in new tab
  28. Li, Z.-Q.; Zhang, S.; Luo, J.-Y.; Cui, J.-J.; Ma, Y.; Dong, S.-L. Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. J. Insect Physiol. 2013, 59, 263-272. [CrossRef] [PubMed] open in new tab
  29. Sun, Y.-L.; Huang, L.-Q.; Pelosi, P.; Wang, C.-Z. A Lysine at the C-Terminus of an Odorant-Binding Protein is Involved in Binding Aldehyde Pheromone Components in Two Helicoverpa Species. PLoS ONE 2013, 8, e55132. [CrossRef] [PubMed] open in new tab
  30. Chen, C.-C.; Hwang, J.-K.; Yang, J.-M. (PS)2-v2: Template-based protein structure prediction server. BMC Bioinform. 2009, 10, 366. [CrossRef] [PubMed] open in new tab
  31. Schmidt, S.; Genz, M.; Balke, K.; Bornscheuer, U.T. The effect of disulfide bond introduction and related Cys/Ser mutations on the stability of a cyclohexanone monooxygenase. J. Biotechnol. 2015, 214, 199-211. [CrossRef] open in new tab
  32. Zhou, P.; Tian, F.; Lv, F.; Shang, Z. Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins Struct. Funct. Bioinforma. 2009, 76, 151-163. [CrossRef] open in new tab
  33. Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. J. Chem. Theory Comput. 2014, 10, 4745-4758. [CrossRef] [PubMed] open in new tab
  34. Tuffery, P.; Thevenet, P.; Guyon, F.; Shen, Y.; Derreumaux, P.; Maupetit, J. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 2012, 40, W288-W293. [CrossRef] open in new tab
  35. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701-1718. [CrossRef] [PubMed] open in new tab
  36. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785-2791. [CrossRef] [PubMed] open in new tab
  37. Wojciechowski, M. Simplified AutoDock force field for hydrated binding sites. J. Mol. Graph. Model. 2017, 78, 74-80. [CrossRef] [PubMed] open in new tab
  38. Srisombat, L.; Jamison, A.C.; Lee, T.R. Stability: A key issue for self-assembled monolayers on gold as thin-film coatings and nanoparticle protectants. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 390, 1-19. [CrossRef] open in new tab
  39. Latif, U.; Can, S.; Hayden, O.; Grillberger, P.; Dickert, F.L. Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors-Detection of bioanalytes. Sens. Actuators B Chem. 2013, 176, 825-830. [CrossRef] open in new tab
  40. Anselmi, C.; Buonocore, A.; Centini, M.; Maffei, R.; Hatt, H. The human olfactory receptor 17-40: Requisites for fitting into the binding pocket. Comput. Biol. Chem. 2011, 35, 159-168. [CrossRef] open in new tab
  41. Desimoni, E.; Brunetti, B. About Estimating the Limit of Detection by the Signal to Noise Approach. Pharm. Anal. Acta. 2015, 6. [CrossRef] open in new tab
  42. Wessa, T.; Göpel, W. Molecular recognition: Supramolecular, polymeric and biomimetic coatings for chemical sensors and chromatographic columns. Fresenius J. Anal. Chem. 1998, 361, 239-245. [CrossRef] open in new tab
  43. di Natale, C.; Macagnano, A.; Davide, F.; D'Amico, A.; Paolesse, R.; Boschi, T.; Faccio, M.; Ferri, G. An electronic nose for food analysis. Sens. Actuators B Chem. 1997, 44, 521-526. [CrossRef] open in new tab
  44. Compagnone, D.; Fusella, G.C.C.; del Carlo, M.; Pittia, P.; Martinelli, E.; Tortora, L.; Paolesse, R.; di Natale, C.; Pittia, P.; Paolesse, R.; et al. Gold nanoparticles-peptide based gas sensor arrays for the detection of food aromas. Biosens. Bioelectron. 2013, 42, 618-625. [CrossRef] [PubMed] open in new tab
Verified by:
Gdańsk University of Technology

seen 40 times

Recommended for you

Meta Tags