A negative effect of carbon phase on specific capacity of electrode material consisted of nanosized bismuth vanadate embedded in carbonaceous matrix - Publication - MOST Wiedzy

Search

A negative effect of carbon phase on specific capacity of electrode material consisted of nanosized bismuth vanadate embedded in carbonaceous matrix

Abstract

Lithium-ion batteries (LIBs) are widely used all over the world. The LIBs belong to a renewable energy source and energy storage devices. The increase in energy demand causes that new materials of higher energy and higher power densities are still under investigation. Herein, we compare electrochemical properties of bismuth vanadate (BiVO4) embedded and not embedded into carbonaceous matrix as an anode material along with structural changes. Material incorporated into carbon phase (BiVO4@C) exhibited much better electrochemical stability but with lower specific capacity (128 mA h/g) in comparison with pure BiVO4 (217 mA h/g). XRD measurements showed the change in crystallographic structure due to lithium ion intercalation/extraction process. Hence, it seemed obvious that the presence of carbon affected the interfacial structural and electrochemical properties of bismuth vanadate based electrodes.

Citations

  • 1

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
SYNTHETIC METALS no. 257, pages 1 - 6,
ISSN: 0379-6779
Language:
English
Publication year:
2019
Bibliographic description:
Nowak A., Trzciński K., Szkoda M., Karczewski J., Gazda M., Lisowska-Oleksiak A.: A negative effect of carbon phase on specific capacity of electrode material consisted of nanosized bismuth vanadate embedded in carbonaceous matrix// SYNTHETIC METALS -Vol. 257, (2019), s.1-6
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.synthmet.2019.116168
Bibliography: test
  1. M. Szkoda, K. Trzciński, J. Rysz, M. Gazda, K. Siuzdak, A. Lisowska-Oleksiak, Solid State Ion. 302 (2017) 197-201. open in new tab
  2. J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, J. Energy Storage 17 (2018) 224-227. open in new tab
  3. M. Wilamowska-Zawlocka, P. Puczkarski, Z. Grabowska, J. Kaspar, M. Graczyk- Zajac, R. Riedel, G.D. Soraru, RSC Adv. 106 (2016) 104597-104607. open in new tab
  4. Y. Feng, S. Dou, Y. Wei, Y. Zhang, X. Song, X. Li, V.S. Battaglia, ACS Omega 11 (2017) 8075-8085. open in new tab
  5. K. Cao, T. Jin, L. Yang, L. Jiao, Mater. Chem. Front. 1 (2017) 2213-2242. open in new tab
  6. A. Chojnacka, M. Molenda, M. Bakierska, R. Dziembaj, ESC Trans. 64 (2015) 165-171. open in new tab
  7. Y.-C. Kuo, H.-T. Peng, Y. Xiao, J.-Y. Lin, J. Solid State Electrochem. 20 (2016) 1625-1631. open in new tab
  8. W. Li, M. Chen, C. Wang, Mater. Lett. 65 (2011) 3368-3370. open in new tab
  9. M. Bakierska, M. Molenda, D. Majda, R. Dziembaj, Procedia Eng. 98 (2014) 14-19. open in new tab
  10. P.-Y. Zhao, J.-J. Tang, C.-Y. Wang, J. Solid State Electrochem. 21 (2017) 555-562. open in new tab
  11. Q. Sun, B. Zhang, Z.-W. Fu, Appl. Surf. Sci. 254 (2008) 3774-3779. open in new tab
  12. G. Wang, X. Xiong, Z. Lin, C. Yang, Z. Lin, M. Liu, Electrochim. Acta 242 (2017) 159-164. open in new tab
  13. J.W. Choi, D. Aurbach, Nat. Rev. Mater. 1 (1-16) (2016) 16013. open in new tab
  14. R. Hu, W. Sun, M. Zeng, M. Zhu, J. Energy Chem. 23 (2014) 338-345. open in new tab
  15. A. Chojnacka, M. Świętosławski, W. Maziarz, R. Dziembaj, M. Molenda, Electrochim. Acta 209 (2016) 7-16. open in new tab
  16. J. Yang, L. Xi, J. Tang, F. Chen, L. Wu, X. Zhou, Electrochim. Acta 217 (2016) 274-282. open in new tab
  17. D.P. Dubal, D.R. Patil, S.S. Patil, N.R. Munirathnam, P. Gomez-Romero, ChemSusChem 10 (21) (2017) 4163-4169. open in new tab
  18. A. Ruud, J. Sottmann, P. Vajeeston, H. Fjellvåg, Phys. Chem. Chem. Phys. 20 (2018) 29798-29803. open in new tab
  19. D.P. Dubal, K. Jayaramulu, R. Zboril, R.A. Fischer, P. Gomez-Romero, J. Mater. Chem. A 6 (2018) 6096-6106. open in new tab
  20. L. Xu, Y. Wei, W. Guo, Y. Guo, Y. Guo, Appl. Surf. Sci. 332 (2015) 682-693. open in new tab
  21. K. Trzciński, M. Szkoda, M. Sawczak, J. Karczewski, A. Lisowska-Oleksiak, Appl. Surf. Sci. 385 (2016) 199-208. open in new tab
  22. K. Trzciński, M. Szkoda, K. Siuzdak, M. Sawczak, A. Lisowska-Oleksiak, Electrochim. Acta 222 (2016) 421-428. open in new tab
  23. Y. Wang, N. Lu, M. Luo, L. Fan, K. Zhao, J. Qu, J. Guan, X. Yuan, Appl. Surf. Sci. 463 (2019) 234-243. open in new tab
  24. J. Li, L. Guo, N. Lei, Q. Song, Z. Liang, ChemElectroChem 4 (2017) 2852-2861. open in new tab
  25. M.R. Palacin, Chem. Soc. Rev. 38 (2009) 2565-2575. open in new tab
  26. Y. Lu, L. Yu, X.W. Lou, Chemistry 4 (2018) 972-996. open in new tab
  27. J. Sottmann, M. Herrmann, P. Vajeeston, A. Ruud, C. Drathen, H. Emerich, D.S. Wragg, H. Fjellvåg, Chem. Mater. 29 (2017) 2803-2810. open in new tab
  28. Wendusu, T. honda, T. Masui, N. Imanaka, RSC Adv. 3 (2013) 24941-24945. open in new tab
  29. J. Luo, X. Zhao, J. Wu, H.D. Jang, H.H. Kung, J. Huang, J. Phys. Chem. Lett. 3 (2012) 1824-1829. open in new tab
  30. Y.H. Xu, Q. Liu, Y.J. Zhu, Y.H. Liu, A. Langrock, M.R. Zachariah, C.S. Wang, Nano Lett. 13 (2013) 470-474. open in new tab
  31. M. Wojdyr, J. Appl. Cryst. 43 (2010) 1126-1128. open in new tab
  32. R.L. Frost, D.A. Henry, M.L. Weier, W. Martens, J. Raman Spectrosc. 37 (2006) 722-732. open in new tab
  33. D. Zhou, L.-X. Pang, W.-G. Qu, C.A. Randall, J. Guo, Z.-M. Qi, T. Shao, X. Yao, RSC Adv. 3 (2013) 5009-5014. open in new tab
  34. S.R.M. Thalluri, C. Martinez-Suarez, A. Virga, N. Russo, G. Sarcacco, Int. J. Chem. Eng. Appl. 4 (2013) 305-309. open in new tab
  35. F.D. Hardcastle, I.E. Wachs, J. Phys. Chem. 95 (1991) 5031-5041. open in new tab
  36. F. Tuinstra, J.I. Koenig, J. Chem. Phys. 53 (1970) 1126-1130. open in new tab
  37. M. Marcinek, L.J. Hardwick, G.Z. Żukowska, R. Kostecki, Carbon 48 (2010) 1552-1557. open in new tab
  38. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 43 (2005) 1731-1742. open in new tab
  39. A.P. Nowak, B. Wicikowska, A. Lisowska-Oleksiak, Solid State Ion. 263 (2014) 131-139. open in new tab
  40. A.C. Ferrari, J. Robertson, Physial Rev. B 61 (2000) 14095-14107. open in new tab
  41. Y. Wang, D.C. Alsmeyer, R.L. McCreery, Chem. Mater. 2 (1990) 557-563. open in new tab
  42. J.-C. Liu, J.-P. Chen, D.-Y. Li, Acta Phys. Sin.-Chem. Ed. 32 (1983) 1053-1060.
  43. C. Julien, A. Mauger, K. Zaghib, H. Groult, Materials 9 (2016) 595-620. open in new tab
  44. S. Chattopadhyay, A.L. Lipson, H.J. Karmel, J.D. Emery, T.T. Fister, P.A. Fenter, M.C. Hersam, M.J. Bedzyk, Chem. Mater. 24 (2012) 3038-3043. open in new tab
  45. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26 (1918) 98-100. open in new tab
  46. W. Cui, F. Wang, J. Wang, H. Liu, C. Wang, Y. Xia, J. Power Sources 196 (2011) 3633-3639. open in new tab
  47. Y. Li, M.A. Trujillo, E. Fu, B. Patterson, L. Fei, Y. Xu, S. Deng, S. Smirnov, H. Luo, J. Mater. Chem. A 1 (2013) 12123-12127. open in new tab
  48. L.L. Zhou, S.Y. Shen, X. Peng, L.N. Wu, Q. Wang, C.H. Shen, T.T. Tu, L. Huang, J.T. Li, S.G. Sun, ACS Appl. Mater. Interfaces 8 (2016) 23739-23745. open in new tab
  49. D. Bresser, S. Passerini, B. Scrosati, Energy Environ. Sci. 9 (2016) 3348-3367. open in new tab
  50. A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, NPJ Comput. Mater. 4 (1-26) (2018) 15. open in new tab
  51. M. Hartmanova, M.T. Le, M. Jergel, V. Smatko, F. Kundracik, Russ. J. Electrochem. 45 (2009) 621-629. open in new tab
  52. Ł. Majchrzycki, M. Walkowiak, A. Martyła, M.Y. Yablokov, M. Nowicki, R. Czajka, Mater. Sci.-Poland 34 (2016) 481-486. open in new tab
Verified by:
Gdańsk University of Technology

seen 22 times

Recommended for you

Meta Tags