A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors - Publication - Bridge of Knowledge

Search

A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors

Abstract

In recent years, emotion recognition algorithms have achieved high efficiency, allowing the development of various affective and affect-aware applications. This advancement has taken place mainly in the environment of personal computers offering the appropriate hardware and sufficient power to process complex data from video, audio, and other channels. However, the increase in computing and communication capabilities of smartphones, the variety of their built-in sensors, as well as the availability of cloud computing services have made them an environment in which the task of recognising emotions can be performed at least as effectively. This is possible and particularly important due to the fact that smartphones and other mobile devices have become the main computer devices used by most people. This article provides a systematic overview of publications from the last 10 years related to emotion recognition methods using smartphone sensors. The characteristics of the most important sensors in this respect are presented, and the methods applied to extract informative features on the basis of data read from these input channels. Then, various machine learning approaches implemented to recognise emotional states are described.

Citations

  • 4 2

    CrossRef

  • 0

    Web of Science

  • 4 1

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
SENSORS no. 20,
ISSN: 1424-8220
Language:
English
Publication year:
2020
Bibliographic description:
Kołakowska A., Szwoch W., Szwoch M.: A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors// SENSORS -Vol. 20,iss. 21 (2020), s.6367-
DOI:
Digital Object Identifier (open in new tab) 10.3390/s20216367
Verified by:
Gdańsk University of Technology

seen 178 times

Recommended for you

Meta Tags