Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core−Shell Structures upon Nanoemulsion Fusion
Abstract
It has been long known that the physical encapsulation of oleic acid-capped iron oxide nanoparticles (OA−IONPs) with the etyltrimethylammonium (CTA+) surfactant induces the formation of spherical iron oxide nanoparticle clusters (IONPCs). However, the behavior and functional properties of IONPCs in chemical reactions have been largely neglected and are still not well-understood. Herein, we report an unconventional ligand-exchange function of IONPCs activated when dispersed in an ethyl acetate/acetate buffer system. The ligand exchange can successfully transform hydrophobic OA−IONP building blocks of IONPCs into highly hydrophilic, acetate-capped iron oxide nanoparticles (Ac−IONPs). More importantly, we demonstrate that the addition of silica precursors (tetraethyl orthosilicate and 3-aminopropyltriethoxysilane) to the acetate/oleate ligand exchange reaction of the IONPs induces the disassembly of the IONPCs into monodispersed iron oxide−acetate−silica core−shell−shell (IONPs@acetate@SiO2) nanoparticles. Our observations evidence that the formation of IONPs@acetate@SiO2 nanoparticles is initiated by a unique micellar fusion mechanism between the Pickering-type emulsions of IONPCs and nanoemulsions of silica precursors formed under ethyl acetate buffered conditions. A dynamic rearrangement of the CTA+−oleate bilayer on the IONPC surfaces is proposed to be responsible for the templating process of the silica shells around the individual IONPs. In comparison to previously reported methods in the literature, our work provides a much more detailed experimental evidence of the silica-coating mechanism in a nanoemulsion system. Overall, ethyl acetate is proven to be a very efficient agent for an effortless preparation of monodispersed IONPs@acetate@SiO2 and hydrophilic Ac−IONPs from IONPCs.
Citations
-
2 1
CrossRef
-
0
Web of Science
-
2 0
Scopus
Authors (13)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1021/acs.langmuir.7b02743
- License
- Copyright (2017 American Chemical Society)
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
LANGMUIR
no. 33,
pages 10351 - 10365,
ISSN: 0743-7463 - Language:
- English
- Publication year:
- 2017
- Bibliographic description:
- Kertmen A., Torruella, P., Coy E., Yate L., Nowaczyk G., Gapiński J., Vogt, C., Toprak M., Estrade S., Peiro F., Milewski S., Jurga S., Andruszkiewicz R.: Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core−Shell Structures upon Nanoemulsion Fusion// LANGMUIR. -Vol. 33, (2017), s.10351-10365
- DOI:
- Digital Object Identifier (open in new tab) 10.1021/acs.langmuir.7b02743
- Verified by:
- Gdańsk University of Technology
seen 193 times
Recommended for you
Theoretical investigation of the structural insights of the interactions of γ-Fe2O3 nanoparticle with (EMIM TFSI) ionic liquid
- A. Sieradzan,
- C. Czaplewski,
- A. Bielicka-Gieldon
- + 2 authors
Nanocrystalline doped zirconia and ceria films for fuel cell application
- P. Jasiński,
- G. Jasiński,
- V. Petrovsky
- + 1 authors