Activated Carbon Produced by Pyrolysis ofWaste Wood and Straw for PotentialWastewater Adsorption - Publication - MOST Wiedzy


Activated Carbon Produced by Pyrolysis ofWaste Wood and Straw for PotentialWastewater Adsorption


Pyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products. The chemical activation agent KOH was chosen and the physical activation was conducted with steam and carbon dioxide as oxidising gases. The eect of the activation process on the surface area, pore volume, structure and composition of the biochar was examined. The samples with the highest surface area (1349.6 and 1194.4 m2/g for straw and wood activated carbons, respectively) were obtained when the chemical activation with KOH solution was applied. The sample with the highest surface area was used as an adsorbent for model wastewater contamination removal.


  • 3


  • 2

    Web of Science

  • 0



artykuły w czasopismach
Published in:
Materials no. 13,
ISSN: 1996-1944
Publication year:
Bibliographic description:
Januszewicz K., Kazimierski P., Klein M., Kardaś d., Łuczak J.: Activated Carbon Produced by Pyrolysis ofWaste Wood and Straw for PotentialWastewater Adsorption// Materials -Vol. 13,iss. 9 (2020), s.2047-
Digital Object Identifier (open in new tab) 10.3390/ma13092047
Bibliography: test
  1. Zhang, L.; Xu, C.C.; Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 2010, 51, 969-982. [CrossRef] open in new tab
  2. Sharma, A.; Pareek, V.; Zhang, D. Biomass pyrolysis-A review of modelling, process parameters and catalytic studies. Renew. Sustain. Energy Rev. 2015, 50, 1081-1096. [CrossRef] open in new tab
  3. Pawel, K.; Dariusz, K. Utjecaj temperature na sastav proizvoda pirolize drva. Drv. Ind. 2017, 68, 307-313.
  4. Kumar, A.; Jones, D.D.; Hanna, M.A. Thermochemical biomass gasification: A review of the current status of the technology. Energies 2009, 2, 556-581. [CrossRef] open in new tab
  5. Krawczyk, D.; Rodero, A.; Zukowski, M.; Teleszewski, T.; Bullejos Marín, D.; Jasiūnas, K.; Milius, P.; Urbonienė, V.; Arrebola, J. Buildings 2020+ Energy sources; open in new tab
  6. Krawczyk, D., Ed.; Printing House of Bialystok University of Technology: Bialystok, Poland, 2019; ISBN 9788365596727.
  7. Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467-481. [CrossRef] open in new tab
  8. Ellem, G.K.; Mulligan, C.J. Biomass char as a fuel for internal combustion engines. Asia-Pac. J. Chem. Eng. 2012, 7, 769-776. [CrossRef] open in new tab
  9. Amaya, A.; Medero, N.; Tancredi, N.; Silva, H.; Deiana, C. Activated carbon briquettes from biomass materials. Bioresour. Technol. 2007, 98, 1635-1641. [CrossRef] open in new tab
  10. Grima-Olmedo, C.; Ramírez-Gómez, Á.; Gómez-Limón, D.; Clemente-Jul, C. Activated carbon from flash pyrolysis of eucalyptus residue. Heliyon 2016, 2. [CrossRef] open in new tab
  11. Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production-A review. Renew. Sustain. Energy Rev. 2007, 11, 1966-2005. [CrossRef] open in new tab
  12. Daud, W.M.A.W.; Ali, W.S.W. Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour. Technol. 2004, 93, 63-69. [CrossRef] open in new tab
  13. Gratuito, M.K.B.; Panyathanmaporn, T.; Chumnanklang, R.-A.; Sirinuntawittaya, N.; Dutta, A. Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresour. Technol. 2008, 99, 4887-4895. [CrossRef] [PubMed] open in new tab
  14. Cagnon, B.; Py, X.; Guillot, A.; Stoeckli, F.; Chambat, G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour. Technol. 2009, 100, 292-298. [CrossRef] [PubMed] open in new tab
  15. Elyounssi, K.; Volle, G.; El Hamidi, A.; Blin, J. Yield and quality of charcoals from olive mill residues and its stone and pulp fractions: An enhanced comparative study. Int. J. Green Energy 2018, 15, 489-495. [CrossRef] open in new tab
  16. Yang, Z.H.; Xiong, S.; Wang, B.; Li, Q.; Yang, W.C. Cr(III) adsorption by sugarcane pulp residue and biochar. J. Cent. South. Univ. 2013, 20, 1319-1325. [CrossRef] open in new tab
  17. Pehlivan, E.; Özbay, N.; Yargıç, A.S.;Şahin, R.Z. Production and characterization of chars from cherry pulp via pyrolysis. J. Environ. Manage. 2017, 203, 1017-1025. [CrossRef] [PubMed] open in new tab
  18. Wrobel-Tobiszewska, A.; Boersma, M.; Sargison, J.; Adams, P.; Jarick, S. An economic analysis of biochar production using residues from Eucalypt plantations. Biomass Bioenergy 2015, 81, 177-182. [CrossRef] open in new tab
  19. Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836-851. [CrossRef] open in new tab
  20. Tan, X.; Liu, S.; Liu, Y.; Gu, Y.; Zeng, G.; Hu, X.; Wang, X.; Liu, S.; Jiang, L. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour. Technol. 2017, 227, 359-372. [CrossRef] open in new tab
  21. Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276-291. [CrossRef] open in new tab
  22. McMillan, J.D.; Adney, W.S.; Mielenz, J.R.; Klasson, K.T. Applied Biochemistry and Biotechnology; Humana Press: Totowa, NJ, USA, 2006. open in new tab
  23. Figueiredo, L.; Pereira, M.; Freitas, M.; Orfaó, J. Modification of the surface chemistry of activated carbons. Carbon N.Y. 1999, 37, 1379-1389. [CrossRef] open in new tab
  24. Shen, W.; Li, Z.; Liu, Y. Surface Chemical Functional Groups Modification of Porous Carbon. Recent Patents Chem. Eng. 2010, 1, 27-40. [CrossRef] open in new tab
  25. Contescu, C.; Adhikari, S.; Gallego, N.; Evans, N.; Biss, B. Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C J. Carbon Res. 2018, 4, 51. [CrossRef] open in new tab
  26. Borhan, A.; Taha, M.F.; Hamzah, A.A. Characterization of activated carbon from wood sawdust prepared via chemical activation using potassium hydroxide. Adv. Mater. Res. 2014, 832, 132-137. [CrossRef] open in new tab
  27. Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710-23725. [CrossRef] open in new tab
  28. Ahmadpour, A.; Rashidi, H.; Jaber, M.; Mahboub, D. Comparing the Performance of KOH with NaOH-Activated Anthracites in terms of Methane Storage. Adsorpt. Sci. Technol. 2013, 31, 729-745. [CrossRef] open in new tab
  29. Ahmadpour, A.; Do, D.D. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon N.Y. 1997, 35, 1723-1732. [CrossRef] open in new tab
  30. Maneerung, T.; Liew, J.; Dai, Y.; Kawi, S.; Chong, C.; Wang, C.H. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresour. Technol. 2016, 200, 350-359. [CrossRef] open in new tab
  31. Cha, J.S.; Park, S.H.; Jung, S.C.; Ryu, C.; Jeon, J.K.; Shin, M.C.; Park, Y.K. Production and utilization of biochar: A review. J. Ind. Eng. Chem. 2016, 40, 1-15. [CrossRef] open in new tab
  32. Purnomo, C.W.; Castello, D.; Fiori, L. Granular activated carbon from grape seeds hydrothermal char. Appl. Sci. 2018, 8, 331. [CrossRef] open in new tab
  33. Román, S.; Ledesma, B.; Álvarez-Murillo, A.; Al-Kassir, A.; Yusaf, T. Dependence of the microporosity of activated carbons on the lignocellulosic composition of the precursors. Energies 2017, 10, 542. [CrossRef] open in new tab
  34. Karcz, H.; Kantorek, M.; Grabowicz, M.; Wierzbicki, K. The feasibility of straw as a fuel source for power generating boilers. Inżynieriaśrodowiska 2013, XI-XII, 8-15. open in new tab
  35. Hema, M.; Arivoli, S. Rhodamine B adsorption by activated carbon: Kinetic and equilibrium studies. Indian J. Chem. Technol. 2009, 16, 38-45.
  36. Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 2016, 53, 41-79. [CrossRef] open in new tab
  37. Enaime, G.; Ennaciri, K.; Ounas, A.; Baçaoui, A.; Seffen, M.; Selmi, T.; Yaacoubi, A. Preparation and characterization of activated carbons from olive wastes by physical and chemical activation: Application to Indigo carmine adsorption. J. Mater. Environ. Sci. 2017, 8, 4125-4137.
  38. Pallares, J.; Gonzalez-Cencerrado, A.; Inmaculada, A. Production and characterization of activated carbon from barley straw by physical activaton with carbon dioxide and steam. J. Chem. Inf. Model. 2019, 53, 1689-1699. open in new tab
  39. Boguta, P.; Sokołowska, Z.; Skic, K.; Tomczyk, A. Chemically engineered biochar -Effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste. Fuel 2019, 256, 115893. [CrossRef] open in new tab
  40. Arivoli, S.; Thenkuzhali, M.; Prasath, M.D. Adsorption of rhodamine B by acid activated carbon-kinetic, thermodynamic and equilibrium studies. Orbital 2009, 1, 138-155. open in new tab
Verified by:
Gdańsk University of Technology

seen 37 times

Recommended for you

Meta Tags