Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes - Publication - MOST Wiedzy

Search

Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes

Abstract

Processing of lignocellulosic biomass includes four major unit operations: pre-treatment, hydrolysis, fermentation and product purifcation prior to biofuel generation via anaerobic digestion. The microorganisms involved in the fermentation metabolize only simple molecules, i.e., monosugars which can be obtained by carrying out the degradation of complex polymers, the main component of lignocellulosic biomass. The object of this paper was to evaluate the saccharifcation conditions and identify the process parameters that should be applied to improve the saccharifcation efciency of lignocellulosic biomass, defned as the simple sugars concentration, which was considered as a crucial parameter for hydrogen generation via dark fermentation. Drawing global conclusions about the occurring changes in the biomass requires learning about the nature of the biomass structure and composition at diferent stages of the process. Therefore, techniques for analysis, as FTIR, HPLC and SEM were applied. The experiment was planned employing Box–Behnken design. The advantageous operating conditions and the composition of saccharifcation enzymatic cocktail were identifed and their values occurred similar in the applied border conditions for all tested biomass types. Analysis of the intermediate solid and liquid streams generated during the pre-treatment procedure revealed several structural and compositional changes in the biomass.

Citations

  • 1

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
CHEMICAL PAPERS no. 74, pages 1199 - 1209,
ISSN: 0366-6352
Language:
English
Publication year:
2020
Bibliographic description:
Kucharska K., Słupek E., Cieśliński H., Kamiński M.: Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes// CHEMICAL PAPERS -Vol. 74, (2020), s.1199-1209
DOI:
Digital Object Identifier (open in new tab) 10.1007/s11696-019-00960-1
Bibliography: test
  1. Abudi ZN, Hu Z, Xiao B, Abood AR, Rajaa N, Laghari M (2016) Effects of pretreatments on thickened waste activated sludge and rice straw co-digestion: experimental and modeling study. J Envi- ron Manag 177:213-222 open in new tab
  2. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675-685 open in new tab
  3. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreat- ment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851-4861 open in new tab
  4. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7(2):163-173 open in new tab
  5. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858-875. https ://doi.org/10.1016/j.encon man.2010.08.013 open in new tab
  6. Bali G, Meng X, Deneff JI, Sun Q, Ragauskas AJ (2015) The Effect of alkaline pretreatment methods on cellulose structure and acces- sibility. Chem Sus Chem 8:275-279 open in new tab
  7. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ram- akrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:e787532 open in new tab
  8. Dahunsi OS, Oranusi S, Efeovbokhan EV (2017) Anaerobic mono- digestion of Tithonia diversifolia (Wild Mexican sunflower). open in new tab
  9. Energy Convers Manag 148:128-145. https ://doi.org/10.1016/j. encon man.2017.05.056 open in new tab
  10. Haque MA, Barman DN, Kang TH, Kim MK, Kim J, Kim H, Yun HD (2013) Effect of dilute alkali pretreatment on structural features and enhanced enzymatic hydrolysis of Miscanthus sinensis at boil- ing temperature with low residence time. Biosyst Eng 114:294- 305. https ://doi.org/10.1016/j.biosy stems eng.2013.01.006 open in new tab
  11. Hasegawa I, Khoo TH, Mae K (2013) Direct saccharification of ligno- cellulosic biomass by hydrolysis with formic acid solution. Green Process Synth 2:143-149 open in new tab
  12. Hernández JJ, Ballesteros R, Aranda G (2013) Characterisation of tars from biomass gasification: Effect of the operating conditions. Energy 50:333-342. https ://doi.org/10.1016/j.energ y.2012.12.005 open in new tab
  13. Ko JK, Bak JS, Jung MW, Lee HJ, Choi I-G, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous- ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100:4374-4380. https ://doi.org/10.1016/J.BIORT ECH.2009.04.026 open in new tab
  14. Kucharska K, Łukajtis R, Słupek E, Cieśliński H, Rybarczyk P, Kamiński M (2018) Hydrogen production from energy poplar preceded by MEA pre-treatment and enzymatic hydrolysis. Mol- ecules 23:1-21. https ://doi.org/10.3390/molec ules2 31130 29 open in new tab
  15. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7-14 open in new tab
  16. Kumar G, Bakonyi P, Periyasamy S, Kim SH, Nemestóthy N, Bélafi- Bakó K (2015a) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sustain Energy Rev 44:728-737 open in new tab
  17. Kumar G, Bakonyi P, Periyasamy S, Kim SH, Nemestóthy N, Bélafi- Bakó K (2015b) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sustain Energy Rev 44:728-737 open in new tab
  18. Lalak J, Kasprzycka A, Murat A, Paprota EM, Tys J (2014) Pretreat- ment methods of lignocelulosic biomass to improve methane fermentation process (a review). Acta Agrophysica 21(1):51-62 open in new tab
  19. Lay JJ (2001) Biohydrogen generation by mesophilic anaerobic fermen- tation of microcrystalline cellulose. Biotechnol Bioeng 74:280- 287. https ://doi.org/10.1002/bit.1118 open in new tab
  20. Lay JJ, Tsai CJ, Huang CC, Chang JJ, Chou CH, Fan KS, Chang JI, Hsu PC (2005) Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen. Water Sci Technol 52:123-129 open in new tab
  21. Łukajtis R, Rybarczyk P, Kucharska K, Konopacka-Łyskawa D, Słupek E, Wychodnik K, Kamiński M (2018) Optimization of sacchari- fication conditions of lignocellulosic biomass under alkaline pre- treatment and enzymatic hydrolysis. Energies 11(4):886. https :// doi.org/10.3390/en110 40886 open in new tab
  22. Michalska K, Ledakowicz S (2013) Alkali pretreatment of Sorghum Moench for biogas production. Chem Pap 67(9):1130-1137 open in new tab
  23. Narra M, James JP, Balasubramanian V (2015) Simultaneous sacchari- fication and fermentation of delignified lignocellulosic biomass at high solid loadings by a newly isolated thermotolerant Kluyvero- myces sp. for ethanol production. Bioresour Technol 179:331-338 open in new tab
  24. Nowak P, Łukajtis R, Kamiński M (2017) Zastosowanie wysoko- sprawnej kolumnowej chromatografii cieczowej w odwróconych układach faz (RP-HPLC) do rozdzielania i wstępnej identyfikacji składników hydrofilowych mieszanin po hydrolizie zasadowej biomasy ligno-celulozowej (BMLC). Camera Sep 9(2):131-154
  25. Sangyoka S, Reungsang A, Lin C-Y (2016) Optimization of biohydro- gen production from sugarcane bagasse by mixed cultures using a statistical method. Sustain Environ Res 26:235-242. https ://doi. org/10.1016/j.serj.2016.05.001 open in new tab
  26. Schilling JS, Tewalt JP, Duncan SM (2009) Synergy between pretreat- ment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Appl Microbiol Biotechnol 84:465-475. https ://doi.org/10.1007/s0025 3-009-1979-7 open in new tab
  27. Sekoai P (2016) Modelling and optimization of operational setpoint parameters for maximum fermentative biohydrogen production using Box-Behnken design. Fermentation 2:15-22. https ://doi. org/10.3390/ferme ntati on203 0015 open in new tab
  28. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008c) Determination of total solids in biomass and total dissolved solids in liquid process samples; Technical Report NREL/TP-510-42621; NREL: Golden, CO, USA, p. 9 open in new tab
  29. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008a) Determination of ash in biomass: laboratory analytical procedure (LAP);
  30. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008b) Determination of sugars, byproducts, and degradation products in liquid fraction process samples; Technical Report NREL/TP-510- 42623; NREL: Golden, CO, USA, pp 1-14 open in new tab
  31. Słupek E, Makoś P, Kamiński M (2018) Metodyka oznaczania sumarycznej zawartości inhibitorów fermentacji ciemnej oraz monocukrów w brzeczkach fermentacyjnych techniką HPLC- RID-UV-VIS/DAD. Camera Sep 10(2):52-63
  32. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for etha- nol production: a review. Bioresour Technol 83:1-11 open in new tab
  33. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bio Resour 2(4):707-738 open in new tab
  34. Trzcinski AP, Stuckey DC (2015) Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions. Bioresour Technol 185:441-444 open in new tab
  35. Wikandari R, Millati R, Taherzadeh MJ (2016) Pretreatment of ligno- celluloses with solvent N-methylmorpholine N-oxide. In: Mus- satto SI (ed) Biomass Fractionation Technologies for a Ligno- cellulosic Feedstock Based Biorefinery. Elsevier Inc., São Paulo, Brazil, pp 255-280. https ://doi.org/10.1016/B978-0-12-80232 3-5.00012 -8 open in new tab
  36. Xie XF, Wang M, Zhang RG, Li J, Qing-Yuan Y (2011) The role of emotions in risk communication. Risk Anal 31(3):450-465. https ://doi.org/10.1111/j.1539-6924.2010.01530 .x open in new tab
  37. Yu Q, Zhuang X, Wang W, Qi W, Wang Q, Tan X, Kong X, Yuan Z (2016) Hemicellulose and lignin removal to improve the enzymatic digestibility and ethanol production. Biomass Bioen- erg 94:105-109. https ://doi.org/10.1016/j.biomb ioe.2016.08.005 open in new tab
  38. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 74 times

Recommended for you

Meta Tags