Albumin–Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics - Publication - Bridge of Knowledge

Search

Albumin–Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics

Abstract

The lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin is one of the major components in synovial fluid. Its electrostatic properties, including the ability to form molecular complexes, are closely related to pH, solvation, and the presence of ions. In the context of synovial fluid, it is relevant to describe the possible interactions between albumin and hyaluronate, taking into account solution composition effects. In this study, the influence of Na+, Mg2+, and Ca2+ ions on human serum albumin–hyaluronan interactions were examined using molecular dynamics tools. It was established that the presence of divalent cations, and especially Ca2+, contributes mostly to the increase of the affinity between hyaluronan and albumin, which is associated with charge compensation in negatively charged hyaluronan and albumin. Furthermore, the most probable binding sites were structurally and energetically characterized. The indicated moieties exhibit a locally positive charge which enables hyaluronate binding (direct and water mediated).

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Authors (9)

Cite as

Full text

download paper
downloaded 19 times
Publication version
Submitted Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
International Journal of Molecular Sciences no. 22, edition 22,
ISSN: 1422-0067
ISSN:
1422-0067
Publication year:
2021
DOI:
Digital Object Identifier (open in new tab) 10.3390/ijms222212360
Bibliography: test
  1. Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.-J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [CrossRef] open in new tab
  2. He, Y.; Li, Z.; Alexander, P.G.; Ocasio-Nieves, B.D.; Yocum, L.; Lin, H.; Tuan, R.S. Pathogenesis of Osteoarthritis: Risk Factors, Regulatory Pathways in Chondrocytes, and Experimental Models. Biology 2020, 9, 194. [CrossRef] open in new tab
  3. Loeser, R.F. The Role of Aging in the Development of Osteoarthritis. Trans. Am. Clin. Climatol. Assoc. 2017, 128, 44-54. [PubMed] open in new tab
  4. Ghosh, S.; Choudhury, D.; Roy, T.; Moradi, A.; Masjuki, H.H.; Pingguan-Murphy, B. Tribological performance of the biological components of synovial fluid in artificial joint implants. Sci. Technol. Adv. Mater. 2015, 16, 045002. [CrossRef] [PubMed] open in new tab
  5. Dėdinaitė, A.; Wieland, F.; Bełdowski, P.; Claesson, P.M. Biolubrication synergy: Hyaluronan -Phospholipid interactions at interfaces. Adv. Colloid Interface Sci. 2019, 274, 102050. [CrossRef] open in new tab
  6. Hui, A.Y.; McCarty, W.J.; Masuda, K.; Firestein, G.S.; Sah, R.L. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 15-37. [CrossRef] open in new tab
  7. Spector, A.A. Fatty acid binding to plasma albumin. J. Lipid Res. 1975, 16, 165-179. [CrossRef] 8. van der Vusse, G.J. Albumin as fatty acid transporter. Drug Metab. Pharmacokinet. 2009, 24, 300-307. [CrossRef] open in new tab
  8. Jacobsen, J.; Brodersen, R. Albumin-bilirubin binding mechanism. J. Biol. Chem. 1983, 258, 6319-6326. [CrossRef] open in new tab
  9. Baker, M.E. Albumin's role in steroid hormone action and the origins of vertebrates: Is albumin an essential protein? FEBS Lett. 1998, 439, 9-12. [CrossRef] open in new tab
  10. Rodríguez Furlán, L.T.; Campderrós, M.E. Effect of Mg2+ binding on transmission of bovine serum albumin (BSA) through ultrafiltration membranes. Sep. Purif. Technol. 2015, 150, 1-12. [CrossRef] open in new tab
  11. Irons, L.; Perkins, D. Studies on the interaction of magnesium, calcium and strontium ions with native and chemically modified human serum albumin. Biochem. J. 1962, 84, 152-156. [CrossRef] [PubMed] open in new tab
  12. Pedersen, K.O. Binding of calcium to serum albumin I. Stoichiometry and intrinsic association constant at physiological ph, ionic strength, and temperature. Scand. J. Clin. Lab. Investig. 1971, 28, 459-469. [CrossRef] open in new tab
  13. Eatough, D.J.; Jensen, T.E.; Hansen, L.D.; Loken, H.F.; Rehfeld, S.J. The binding of Ca2+ and Mg2+ to human serium albumin: A calorimetric study. Thermochim. Acta 1978, 25, 289-297. [CrossRef] open in new tab
  14. Deerfield, D.W.; Berkowitz, P.; Olson, D.L.; Wells, S.; Hoke, R.A.; Koehler, K.A.; Pedersen, L.G.; Hiskey, R.G. The effect of divalent metal ions on the electrophoretic mobility of bovine prothrombin and bovine prothrombin fragment 1. J. Biol. Chem. 1986, 261, 4833-4839. [CrossRef] open in new tab
  15. Besarab, A.; Deguzman, A.; Swanson, J.W. Effect of albumin and free calcium concentrations on calcium binding in vitro. J. Clin. Pathol. 1981, 34, 1361-1367. [CrossRef] open in new tab
  16. Pedersen, K.O. Binding of calcium to serum albumin IV. Effect of temperature and thermodynamics of calcium-albumin interaction. Scand. J. Clin. Lab. Investig. 1972, 30, 89-94. [CrossRef] open in new tab
  17. Saroff, H.A.; Lewis, M.S. The binding of calcium ions to serum albumin. J. Phys. Chem. 1963, 67, 1211-1216. [CrossRef] open in new tab
  18. van Os, G.A.J.; Koopman-van Eupen, J.H.M. The interaction of sodium, potassium, calcium, and magnesium with human serum albumin, studied by means of conductivity measurements. Recl. Des Trav. Chim. Des Pays-Bas 1957, 76, 390-400. [CrossRef] open in new tab
  19. Murakami, T.; Yarimitsu, S.; Nakashima, K.; Sawae, Y.; Sakai, N. Influence of synovia constituents on tribological behaviors of articular cartilage. Friction 2013, 1, 150-162. [CrossRef] open in new tab
  20. CURTAIN, C.C. The nature of the protein in the hyaluronic complex of bovine synovial fluid. Biochem. J. 1955, 61, 688-697. [CrossRef] open in new tab
  21. Oates, K.M.N.; Krause, W.E.; Jones, R.L.; Colby, R.H. Rheopexy of synovial fluid and protein aggregation. J. R. Soc. Interface 2006, 3, 167-174. [CrossRef] open in new tab
  22. Murakami, T.; Nakashima, K.; Yarimitsu, S.; Sawae, Y.; Sakai, N. Effectiveness of adsorbed film and gel layer in hydration lubrication as adaptive multimode lubrication mechanism for articular cartilage. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2011, 225, 1174-1185. [CrossRef] open in new tab
  23. Lenormand, H.; Amar-Bacoup, F.; Vincent, J.C. PH effects on the hyaluronan hydrolysis catalysed by hyaluronidase in the presence of proteins. Part III. The electrostatic non-specific hyaluronan-hyaluronidase complex. Carbohydr. Polym. 2011, 86, 1491-1500. [CrossRef] open in new tab
  24. Phan, H.T.M.; Bartelt-Hunt, S.; Rodenhausen, K.B.; Schubert, M.; Bartz, J.C. Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE). PLoS ONE 2015, 10, e0141282. [CrossRef] open in new tab
  25. Edelman, R.; Assaraf, Y.G.; Levitzky, I.; Shahar, T.; Livney, Y.D. Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy. Oncotarget 2017, 8, 24337-24353. [CrossRef] [PubMed] open in new tab
  26. Zewde, B.; Atoyebi, O.; Gugssa, A.; Gaskell, K.J.; Raghavan, D. An Investigation of the Interaction between Bovine Serum Albumin-Conjugated Silver Nanoparticles and the Hydrogel in Hydrogel Nanocomposites. ACS Omega 2021, 6, 11614-11627. [CrossRef] open in new tab
  27. Nečas, D.; Sadecká, K.; Vrbka, M.; Galandáková, A.; Wimmer, M.A.; Gallo, J.; Hartl, M. The effect of albumin and γ-globulin on synovial fluid lubrication: Implication for knee joint replacements. J. Mech. Behav. Biomed. Mater. 2021, 113. [CrossRef] open in new tab
  28. Nakashima, K.; Sawae, Y.; Murakami, T. Study on wear reduction mechanisms of artificial cartilage by synergistic protein boundary film formation. JSME Int. Journal, Ser. C Mech. Syst. Mach. Elem. Manuf. 2006, 48, 555-561. [CrossRef] open in new tab
  29. Int. J. Mol. Sci. 2021, 22, 12360 open in new tab
  30. Xu, S.; Yamanaka, J.; Sato, S.; Miyama, I.; Yonese, M. Characteristics of complexes composed of sodium hyaluronate and bovine serum albumin. Chem. Pharm. Bull. 2000, 48, 779-783. [CrossRef] open in new tab
  31. Kaspchak, E.; Goedert, A.C.; Igarashi-Mafra, L.; Mafra, M.R. Effect of divalent cations on bovine serum albumin (BSA) and tannic acid interaction and its influence on turbidity and in vitro protein digestibility. Int. J. Biol. Macromol. 2019, 136, 486-492. [CrossRef] [PubMed] open in new tab
  32. Roy, A.S.; Dinda, A.K.; Pandey, N.K.; Dasgupta, S. Effects of urea, metal ions and surfactants on the binding of baicalein with bovine serum albumin. J. Pharm. Anal. 2016, 6, 256-267. [CrossRef] open in new tab
  33. Shahabadi, N.; Khorshidi, A.; Mohammadpour, M. Investigation of the effects of Zn2+, Ca2+ and Na+ ions on the interaction between zonisamide and human serum albumin (HSA) by spectroscopic methods. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2014, 122, 48-54. [CrossRef] [PubMed] open in new tab
  34. Wang, N.; Ku, S.; Yu, P.; Zhao, B.; Ye, L. Spectroscopic studies on the interaction of efonidipine with bovine serum albumin. In Proceedings of the 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16-18 May 2008; pp. 261-264. open in new tab
  35. Mallappa, M.; Savanur, M.A.; Gowda, B.G.; Vishwanth, R.S.; Puthusseri, B. Molecular Interaction of Hemorrheologic Agent, Pentoxifylline with Bovine Serum Albumin: An Approach to Investigate the Drug Protein Interaction Using multispectroscopic, Voltammetry and Molecular Modelling Techniques. Z. Fur Phys. Chem. 2019, 233, 973-994. [CrossRef] open in new tab
  36. Fang, Y.W.; Yin, Z.N. Prepatation of a hyaluronic acid modified bovine serum albumin nanoparticle and its anti-tumor effect. J. Sichuan Univ. 2011, 42, 408-502.
  37. Lei, C.; Liu, X.R.; Chen, Q.B.; Li, Y.; Zhou, J.L.; Zhou, L.Y.; Zou, T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Release 2021, 331, 416-433. [CrossRef] open in new tab
  38. Curcio, M.; Diaz-Gomez, L.; Cirillo, G.; Nicoletta, F.P.; Leggio, A.; Iemma, F. Dual-targeted hyaluronic acid/albumin micelle-like nanoparticles for the vectorization of doxorubicin. Pharmaceutics 2021, 13, 1-16. [CrossRef] open in new tab
  39. Huang, D.; Chen, Y.S.; Rupenthal, I.D. Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery to the retina. Mol. Pharm. 2017, 14, 533-545. [CrossRef] open in new tab
  40. Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life 2005, 57, 787-796. [CrossRef] open in new tab
  41. Ling, I.; Taha, M.; Al-Sharji, N.A.; Abou-Zied, O.K. Selective binding of pyrene in subdomain IB of human serum albumin: Combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2018, 194, 36-44. [CrossRef] [PubMed] open in new tab
  42. Zielinski, K.; Sekula, B.; Bujacz, A.; Szymczak, I. Structural investigations of stereoselective profen binding by equine and leporine serum albumins. Chirality 2020, 32, 334-344. [CrossRef] [PubMed] open in new tab
  43. Amézqueta, S.; Beltrán, J.L.; Bolioli, A.M.; Campos-vicens, L.; Luque, F.J.; Ràfols, C. Evaluation of the interactions between human serum albumin (Hsa) and non-steroidal anti-inflammatory (nsaids) drugs by multiwavelength molecular fluorescence, structural and computational analysis. Pharmaceuticals 2021, 14, 214. [CrossRef] open in new tab
  44. Zenei, T.; Hiroshi, T. Specific and non-specific ligand binding to serum albumin. Biochem. Pharmacol. 1985, 34, 1999-2005. [CrossRef] open in new tab
  45. Brown, K.L.; Banerjee, S.; Feigley, A.; Abe, H.; Blackwell, T.S.; Pozzi, A.; Hudson, B.; Zent, R. Salt-bridge modulates differential calcium-mediated ligand binding to integrin α1-and α2-I domains. Sci. Rep. 2018, 8, 1-14. [CrossRef] open in new tab
  46. Matsarskaia, O.; Roosen-Runge, F.; Schreiber, F. Multivalent ions and biomolecules: Attempting a comprehensive perspective. ChemPhysChem 2020, 21, 1742-1767. [CrossRef] open in new tab
  47. Goovaerts, V.; Stroobants, K.; Absillis, G.; Parac-Vogt, T.N. Molecular interactions between serum albumin proteins and Keggin type polyoxometalates studied using luminescence spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 18378-18387. [CrossRef] open in new tab
  48. Vandebroek, L.; Van Meervelt, L.; Parac-Vogt, T.N. Direct observation of the ZrIV interaction with the carboxamide bond in a noncovalent complex between Hen Egg White Lysozyme and a Zr-substituted Keggin polyoxometalate. Acta Crystallogr. Sect. C Struct. Chem. 2018, 74, 1348-1354. [CrossRef] open in new tab
  49. Srivastava, R.; Chattopadhyaya, M.; Bandyopadhyay, P. Calculation of salt-dependent free energy of binding of β-lactoglobulin homodimer formation and mechanism of dimer formation using molecular dynamics simulation and three-dimensional reference interaction site model (3D-RISM): Diffuse salt ions and non-po. Phys. Chem. Chem. Phys. 2020, 22, 2142-2156. [CrossRef] open in new tab
  50. Stutzman, J.R.; Luongo, C.A.; McLuckey, S.A. Covalent and non-covalent binding in the ion/ion charge inversion of peptide cations with benzene-disulfonic acid anions. J. Mass Spectrom. 2012, 47, 669-675. [CrossRef] open in new tab
  51. Zhou, H.X.; Pang, X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem. Rev. 2018, 118, 1691-1741. [CrossRef] [PubMed] open in new tab
  52. Franchi, M.; Ferris, J.P.; Gallori, E. Cations as mediators of the adsorption of nucleic acids on clay surfaces in prebiotic environ- ments. Orig. Life Evol. Biosph. 2003, 33, 1-16. [CrossRef] open in new tab
  53. Xi, Z.; Zhang, Y.; Hegde, R.S.; Shakked, Z.; Crothers, D.M. Anomalous DNA binding by E2 regulatory protein driven by spacer sequence TATA. Nucleic Acids Res. 2010, 38, 3827-3833. [CrossRef] [PubMed] open in new tab
  54. Kumarevel, T.; Mizuno, H.; Kumar, P.K.R. Characterization of the metal ion binding site in the anti-terminator protein, HutP, of Bacillus subtilis. Nucleic Acids Res. 2005, 33, 5494-5502. [CrossRef] open in new tab
  55. Vorum, H.; Fisker, K.; Otagiri, M.; Pedersen, A.O.; Kragh-Hansen, U. Calcium ion binding to clinically relevant chemical modifications of human serum albumin. Clin. Chem. 1995, 41, 1654-1661. [CrossRef] [PubMed] open in new tab
  56. Bertram, K.L.; Banderali, U.; Tailor, P.; Krawetz, R.J. Ion channel expression and function in normal and osteoarthritic human synovial fluid progenitor cells. Channels 2016, 10, 148-157. [CrossRef] open in new tab
  57. Ghosh, S.; Choudhury, D.; Das, N.S.; Pingguan-Murphy, B. Tribological role of synovial fluid compositions on artificial joints-A systematic review of the last 10 years. Lubr. Sci. 2014, 26, 387-410. [CrossRef] open in new tab
  58. Balazs, E.A. Analgesic effect of elastoviscous hyaluronan solutions and the treatment of arthritic pain. Cells Tissues Organs 2003, 174, 49-62. [CrossRef] [PubMed] open in new tab
  59. Hájovská, P.; Chytil, M.; Kalina, M. Rheological study of albumin and hyaluronan-albumin hydrogels: Effect of concentration, ionic strength, pH and molecular weight. Int. J. Biol. Macromol. 2020, 161, 738-745. [CrossRef] open in new tab
  60. Stellavato, A.; Vassallo, V.; La Gatta, A.; Pirozzi, A.V.A.; De Rosa, M.; Balato, G.; D'Addona, A.; Tirino, V.; Ruosi, C.; Schiraldi, C. Novel Hybrid Gels Made of High and Low Molecular Weight Hyaluronic Acid Induce Proliferation and Reduce Inflammation in an Osteoarthritis in Vitro Model Based on Human Synoviocytes and Chondrocytes. Biomed Res. Int. 2019, 2019. [CrossRef] open in new tab
  61. García-Padilla, S.; Duarte-Vázquez, M.A.; Gonzalez-Romero, K.E.; Caamaño, M.D.C.; Rosado, J.L. Effectiveness of intra-articular injections of sodium bicarbonate and calcium gluconate in the treatment of osteoarthritis of the knee: A randomized double-blind clinical trial. BMC Musculoskelet. Disord. 2015, 16, 4328219. [CrossRef] open in new tab
  62. Chlebowski, R.T.; Pettinger, M.; Johnson, K.C.; Wallace, R.; Womack, C.; Mossavar-Rahmani, Y.; Stefanick, M.; Wactawski-Wende, J.; Carbone, L.; Lu, B.; et al. Calcium Plus Vitamin D Supplementation and Joint Symptoms in Postmenopausal Women in the Women's Health Initiative Randomized Trial. J. Acad. Nutr. Diet. 2013, 113, 1302-1310. [CrossRef] open in new tab
  63. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455-461. [CrossRef] open in new tab
  64. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; et al. A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations. J. Comput. Chem. 2003, 24, 1999-2012. [CrossRef] [PubMed] open in new tab
  65. Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA-A self-parameterizing force field. Proteins Struct. Funct. Genet. 2002, 47, 393-402. [CrossRef] open in new tab
  66. Krieger, E.; Vriend, G. YASARA View-molecular graphics for all devices-from smartphones to workstations. Bioinformatics 2014, 30, 2981-2982. [CrossRef] open in new tab
  67. Krieger, E.; Dunbrack, R.L.; Hooft, R.W.W.; Krieger, B. Assignment of protonation states in proteins and ligands: Combining pK a prediction with hydrogen bonding network optimization. Methods Mol. Biol. 2012, 819, 405-421. [PubMed] open in new tab
  68. Krieger, E.; Vriend, G. New ways to boost molecular dynamics simulations. J. Comput. Chem. 2015, 36, 996-1007. [CrossRef] [PubMed] open in new tab
  69. Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696-3713. [CrossRef] open in new tab
  70. Kirschner, K.N.; Yongye, A.B.; Tschampel, S.M.; González-Outeiriño, J.; Daniels, C.R.; Foley, B.L.; Woods, R.J. GLYCAM06: A generalizable biomolecular force field. carbohydrates. J. Comput. Chem. 2008, 29, 622-655. [CrossRef] open in new tab
  71. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Genet. 2006, 65, 712-725. [CrossRef] open in new tab
  72. Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-8593. [CrossRef] open in new tab
  73. Perger, W.F.; Pandey, R.; Blanco, M.A.; Zhao, J. First-principles intermolecular binding energies in organic molecular crystals. Chem. Phys. Lett. 2004, 388, 175-180. [CrossRef] open in new tab
Verified by:
No verification

seen 100 times

Recommended for you

Meta Tags