An Automatic Self-Tuning Control System Design for an Inverted Pendulum - Publication - MOST Wiedzy


An Automatic Self-Tuning Control System Design for an Inverted Pendulum


A control problem of an inverted pendulum in the presence of parametric uncertainty has been investigated in this paper. In particular, synthesis and implementation of an automatic self-tuning regulator for a real inverted pendulum have been given. The main cores of the control system are a swing-up control method and a stabilisation regulator. The first one is based on the energy of an inverted pendulum, whereas the second one uses the linear-quadratic regulator (LQR). Because not all of the inverted pendulum parameter values are exactly known an automatic self-tuning mechanism for designed control system has been proposed. It bases on a devised procedure for identifying parameters. The entire derived control system enables effective a pendulum swing-up and its stabilisation at an upper position. The performance of the proposed control system has been validated by simulation in Matlab/Simulink environment with the use of the inverted pendulum model as well as through experimental works using the constructed inverted pendulum on a cart.


  • 5


  • 6

    Web of Science

  • 7


Cite as

Full text

download paper
downloaded 179 times
Publication version
Accepted or Published Version
Creative Commons: CC-BY open in new tab



artykuły w czasopismach
Published in:
IEEE Access no. 8, pages 26726 - 26738,
ISSN: 2169-3536
Publication year:
Bibliographic description:
Waszak M., Łangowski R.: An Automatic Self-Tuning Control System Design for an Inverted Pendulum// IEEE Access -Vol. 8, (2020), s.26726-26738
Digital Object Identifier (open in new tab) 10.1109/access.2020.2971788
Bibliography: test
  1. A. S. Al-Araji, ''An adaptive swing-up sliding mode controller design for a real inverted pendulum system based on culture-bees algorithm,'' Eur. J. Control, vol. 45, pp. 45-56, Jan. 2019. open in new tab
  2. K. Furuta, M. Yamakita, and S. Kobayashi, ''Swing up control of inverted pendulum,'' in Proc. Int. Conf. Ind. Electron., Control Instrum. (IECON), Dec. 2002, pp. 2193-2198. open in new tab
  3. S. Jadlovská and J. Sarnovský, ''Classical double inverted pendulum- A complex overview of a system,'' in Proc. IEEE 10th Int. Symp. Appl. Mach. Intell. Informat. (SAMI), Jan. 2012, pp. 103-108. open in new tab
  4. K. Andrzejewski, M. Czyżniewski, M. Zielonka, R. Łangowski, and T. Zubowicz, ''A comprehensive approach to double inverted pendulum modelling,'' Arch. Control Sci., vol. 29, no. 3, pp. 459-483, 2019.
  5. Y. Zhuang, Z. Hu, and Y. Yao, ''Two-wheeled self-balancing robot dynamic model and controller design,'' in Proc. 11th World Congr. Intell. Control Autom., Jun. 2014, pp. 1935-1939.
  6. S. Wenxia and C. Wei, ''Simulation and debugging of LQR control for two-wheeled self-balanced robot,'' in Proc. Chin. Autom. Congr. (CAC), Oct. 2017, pp. 2391-2395. open in new tab
  7. F. Dai, X. Gao, S. Jiang, W. Guo, and Y. Liu, ''A two-wheeled inverted pendulum robot with friction compensation,'' Mechatronics, vol. 30, pp. 116-125, Sep. 2015. open in new tab
  8. H. G. Nguyen, J. Morrell, K. D. Mullens, A. B. Burmeister, S. Miles, N. Farrington, K. M. Thomas, and D. W. Gage, ''Segway robotic mobility platform,'' Proc. SPIE, vol. 5609, pp. 207-220, Dec. 2004. open in new tab
  9. M. Velazquez, D. Cruz, S. Garcia, and M. Bandala, ''Velocity and motion control of a self-balancing vehicle based on a cascade control strategy,'' Int. J. Adv. Robotic Syst., vol. 13, no. 3, p. 106, Jun. 2016. open in new tab
  10. Y. Zhang, L. Zhang, W. Wang, Y. Li, and Q. Zhang, ''Design and imple- mentation of a two-wheel and hopping robot with a linkage mechanism,'' IEEE Access, vol. 6, pp. 42422-42430, 2018. open in new tab
  11. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, ''The intelligent ASIMO: System overview and integra- tion,'' in Proc. IEEE/RSJ Int. Conf. Intell. Robots System, Sep./Oct. 2002, pp. 2478-2483. open in new tab
  12. J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade, ''Footstep planning for the honda ASIMO humanoid,'' in Proc. IEEE Int. Conf. Robot. Autom., Jan. 2006, pp. 629-634. open in new tab
  13. M. Rosenblum and A. Pikovsky, ''Synchronization: From pendulum clocks to chaotic lasers and chemical oscillators,'' Contemp. Phys., vol. 44, no. 5, pp. 401-416, Sep. 2003. open in new tab
  14. F. Dörfler and F. Bullo, ''Synchronization in complex networks of phase oscillators: A survey,'' Automatica, vol. 50, no. 6, pp. 1539-1564, Jun. 2014. open in new tab
  15. Pendulum & Cart Control System. Accessed: Nov. 22, 2019. [Online]. Available: open in new tab
  16. Ball With Pendulum Suspension. open in new tab
  17. Accessed: Nov. 22, 2019. [Online]. Available: open in new tab
  18. Rotary Inverted Pendulum. Accessed: Nov. 22, 2019. [Online]. Available: open in new tab
  19. R. P. M. Chan, K. A. Stol, and C. R. Halkyard, ''Review of modelling and control of two-wheeled robots,'' Annu. Rev. Control, vol. 37, no. 1, pp. 89-103, Apr. 2013. open in new tab
  20. M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter, Bounding Approaches to System Identification. Boston, MA, USA: Springer, 1996. open in new tab
  21. Z. Jie and R. Sijing, ''Sliding mode control of inverted pendulum based on state observer,'' in Proc. 6th Int. Conf. Inf. Sci. Technol. (ICIST), May 2016, pp. 322-326. open in new tab
  22. M.-S. Park and D. Chwa, ''Swing-up and stabilization control of inverted- pendulum systems via coupled sliding-mode control method,'' IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3541-3555, Sep. 2009.
  23. P. Bhavsar and V. Kumar, ''Trajectory tracking of linear inverted pendulum using integral sliding mode control,'' Int. J. Intell. Syst. Appl., vol. 4, no. 6, pp. 31-38, Jun. 2012. open in new tab
  24. R. Lozano and I. Fantoni, ''Passivity based control of the inverted pendu- lum,'' in Proc. 4th IFAC Symp. Nonlinear Control Syst. Design, vol. 31, 1998, pp. 143-148. open in new tab
  25. A. I. Roose, S. Yahya, and H. Al-Rizzo, ''Fuzzy-logic control of an inverted pendulum on a cart,'' Comput. Electr. Eng., vol. 61, pp. 31-47, Jul. 2017. open in new tab
  26. W. Tang, G. Chen, and R. Lu, ''A modified fuzzy PI controller for a flexible-joint robot arm with uncertainties,'' Fuzzy Sets Syst., vol. 118, no. 1, pp. 109-119, Feb. 2001. open in new tab
  27. C. Peng, M.-R. Fei, and E. Tian, ''Networked control for a class of T-S fuzzy systems with stochastic sensor faults,'' Fuzzy Sets Syst., vol. 212, pp. 62-77, Feb. 2013. open in new tab
  28. Z. Li and C. Yang, ''Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum mod- els,'' IEEE Trans. Control Syst. Technol., vol. 20, no. 6, pp. 1583-1591, Nov. 2012. open in new tab
  29. k. Åström and K. Furuta, ''Swinging up a pendulum by energy control,'' Automatica, vol. 36, no. 2, pp. 287-295, Feb. 2000. open in new tab
  30. J.-J. Wang, ''Simulation studies of inverted pendulum based on PID controllers,'' Simul. Model. Pract. Theory, vol. 19, no. 1, pp. 440-449, Jan. 2011. open in new tab
  31. L. B. Prasad, B. Tyagi, and H. O. Gupta, ''Optimal control of nonlinear inverted pendulum dynamical system with disturbance input using PID controller and LQR,'' in Proc. IEEE Int. Conf. Control Syst., Comput. Eng., Nov. 2011, pp. 540-545. open in new tab
  32. C. Aguilar-IbaÑez, J. A. Mendoza-Mendoza, M. S. Suarez-Castanon, and J. Davila, ''A nonlinear robust PI controller for an uncertain system,'' Int. J. Control, vol. 87, no. 5, pp. 1094-1102, May 2014. open in new tab
  33. A. K. Patra, S. S. Biswal, and P. K. Rout, ''Backstepping linear quadratic gaussian controller design for balancing an inverted pendulum,'' IETE J. Res., pp. 1-15, Mar. 2019. open in new tab
  34. R. S. Martins and F. Nunes, ''Control system for a self-balancing robot,'' in Proc. 4th Exp. Int. Conf., Jun. 2017, pp. 297-302. open in new tab
  35. C. Mahapatra and S. Chauhan, ''Tracking control of inverted pendulum on a cart with disturbance using pole placement and LQR,'' in Proc. Int. Conf. Emerg. Trends Comput. Commun. Technol. (ICETCCT), Nov. 2017, pp. 1-6. open in new tab
  36. D. Chatterjee, A. Patra, and H. K. Joglekar, ''Swing-up and stabilization of a cart-pendulum system under restricted cart track length,'' Syst. Control Lett., vol. 47, no. 4, pp. 355-364, Nov. 2002. open in new tab
  37. K. J. Åström and B. Wittenmark, Adaptive Control, N. Y. Mineola, Ed., 2nd ed. New York, NY, USA: Dover, 2008.
  38. S. Ozcelik, J. DeMarchi, H. Kaufman, and K. Craig, ''Control of an inverted pendulum using direct model reference adaptive control,'' in Proc. IFAC Conf. Control Ind. Syst., 1997, pp. 585-590. open in new tab
  39. S. Trimpe, A. Millane, S. Doessegger, and R. D'Andrea, ''A self-tuning LQR approach demonstrated on an inverted pendulum,'' in Proc. 19th IFAC World Congr., 2014, pp. 11281-11287. open in new tab
  40. C. Pozna and R.-E. Precup, ''An approach to the design of nonlinear state-space control systems,'' Stud. Inform. Control, vol. 27, pp. 5-14, Mar. 2018. open in new tab
  41. K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers. Princeton, NJ, USA: Princeton Univ. Press, 2008. open in new tab
  42. IP-STC-MATLAB Code Repository. Accessed: Jan. 3, 2020. [Online]. open in new tab
  43. IP-M-Construction Mechanical Design. Accessed: Jan. 3, 2020.
  44. IP-E-Construction Electronics Circuits Design. Accessed: Jan. 3, 2020. [Online]. open in new tab
  45. IP-STM32 Code Repository. Accessed: Jan. 3, 2020. [Online]. Available:
  46. IP-VIDEO Repository. Accessed: Sep. 30, 2019. [Online]. Available:
Verified by:
Gdańsk University of Technology

seen 151 times

Recommended for you

Meta Tags