Application of electronic nose to effectiveness monitoring of air contaminated with toluene vapors biofiltration process - Publication - Bridge of Knowledge

Search

Application of electronic nose to effectiveness monitoring of air contaminated with toluene vapors biofiltration process

Abstract

The research presents the application of electronic nose (combined with MLR model) to on-line effectiveness monitoring of biofiltration of air contaminated with hydrophobic, odorous compound (toluene vapors). The research was conducted using two-section biotrickling filter inhabited by Candida environmental isolates. Gas chromatography was used as the comparative technique to obtain reliable quantification of toluene concentration in the samples. After about 200 hours of the process, a removal efficiency of 49% was obtained.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 33 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Conference activity
Type:
materiały konferencyjne indeksowane w Web of Science
Title of issue:
The 10th Jubilee Scientific Conference – InfoGlob 2018 strony 1 - 8
ISSN:
2261-2424
Language:
English
Publication year:
2018
Bibliographic description:
Szulczyński B., Rybarczyk P., Gębicki J..: Application of electronic nose to effectiveness monitoring of air contaminated with toluene vapors biofiltration process, W: The 10th Jubilee Scientific Conference – InfoGlob 2018, 2018, ,.
DOI:
Digital Object Identifier (open in new tab) 10.1051/shsconf/20185702014
Bibliography: test
  1. A. Grzelka, I. Sówka, U. Miller, Inż. Ekolog. 2, 56-64 (2018) open in new tab
  2. P. Lewkowska, B. Cieślik, T. Dymerski, P. Konieczka, J. Namieśnik, Environ. Res. 151, 573-586 (2016) open in new tab
  3. P. Henshaw, J. Nicell, A. Sikdar, Atmos. Environ. 40, 1016 (2006) open in new tab
  4. J.M. Estrada, N.J.R.B. Kraakman, R. Muñoz, R. Lebrero, Environ. Sci. Technol. 45, 1100 (2011) open in new tab
  5. D. McNevin, J. Barford, Biochem. Eng. J. 5, 231-242 (2000) open in new tab
  6. K. Chmiel, A.B. Jastrzębski, M. Palica, Przem. Chem. 84, 442-445 (2005) open in new tab
  7. M. Schiavon, M. Ragazzi, E.C. Rada, V. Torretta, Crit. Rev. Biotechnol. 36, 1143-1155 (2016) open in new tab
  8. M. Ferdowsi, A. Avalos Ramirez, J.P. Jones, M. Heitz, Int. Biodeterior. Biodegrad. 119, 336-348 (2017) open in new tab
  9. Y. Cheng, H. He, C. Yang, G. Zeng, X. Li, H. Chen, G. Yu, Biotechnol. Adv. 34, 1091- 1102 (2016) open in new tab
  10. L. Capelli, S. Sironi, R. Del Rosso, Sensors 14, 19979-20007 (2014) open in new tab
  11. B. Szulczyński, T. Wasilewski, W. Wojnowski, T. Majchrzak, T. Dymerski, J. Namieśnik, J. Gębicki, Sensors 17, 2671 (2017) open in new tab
  12. A.D. Wilson, M. Baietto, Sensors 9, 5099-5148 (2009) open in new tab
  13. B. Szulczyński, K. Armiński, J. Namieśnik, J. Gębicki, Sensors 18, 519 (2018) open in new tab
  14. R. Lopez, I.O. Cabeza, I. Giraldez, M.J. Diaz, Bioresour. Technol. 102, 7984-7993 (2011) open in new tab
  15. B. Szulczyński, P. Rybarczyk, J. Gębicki, Monatsh. Chem. 149, 1693-1699 (2018) open in new tab
  16. I.O. Cabeza, R. Lopez, I. Giraldez, R.M. Stuetz, M.J. Diaz, Chem. Eng. J. 233, 149-158 (2013) open in new tab
  17. B. Szulczyński, J. Gębicki, J. Namieśnik, Chem. Pap. 72, 527-532 (2018) open in new tab
  18. J. Octavio Saucedo-Lucero, R. Marcos, M. Salvador, S. Arriaga, R. Muñoz, G. Quijano, Chemosphere 117, 774-780 (2014)
Sources of funding:
  • Grant No. UMO-2015/19/B/ST4/02722 from the National Science Centre, Poland.
Verified by:
Gdańsk University of Technology

seen 163 times

Recommended for you

Meta Tags