Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives - Publication - MOST Wiedzy

Search

Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives

Abstract

Nucleic acids in the form of aptamers play a growing and significant role in the targeted and rapid analysis of environmental sample composition and medical analyses. In this paper, the review of both aptamers synthesis methods as well as application of these short chain oligonucleotides (with critical comments on their strong and weak features) are given. The first ones include: systematic evolution of ligands by exponential enrichment (SELEX), high throughput aptamer identification screen (HAPIscreen), and a non-equilibrium capillary electrophoresis of equilibrium mixture (NECEEM). Afterwards, manuscript describes variety of sensors and biotests utilizing aptamers as active part of its action starting from electrochemical aptasensors, through optical to piezo-electric ones. Described biotests present basic developments in enzymelinked apta-sorbent assays (ELASA) that can be performed with different variations (enzyme-linked aptamer assay (ELAA), enzyme-linked oligonucleotide assay (ELONA) and aptamerlinked immobilized sorbent assay (ALISA)). Next, the review presents advantages and drawbacks of recent aptameric developments in versatile laboratory applications, namely medical ones, as well as analytical and bioassays. Utilitarian development of aptasensors and aptamers would strongly benefit from an assembly of interdisciplinary teams containing chemists, physicists, biologists, medical doctors, and material and electronic scientists, to determine the most effective application methodologies.

Citations

  • 3

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Full text

download paper
downloaded 0 times

License

Copyright (2019 Taylor & Francis Group, LLC)

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY no. 50, pages 816 - 867,
ISSN: 1064-3389
Language:
English
Publication year:
2020
Bibliographic description:
Kudłak B., Wieczerzak M.: Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives// CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY. -Vol. 50, iss. 8 (2020), s.816-867
DOI:
Digital Object Identifier (open in new tab) 10.1080/10643389.2019.1634457
Bibliography: test
  1. Actis, P., Rogers, A., Nivala, J., Vilozny, B., Seger, R. A., Jejelowo, O., & Pourmand, N. (2011). Reversible thrombin detection by aptamer functionalized STING sensors. Biosensors and Bioelectronics, 26(11), 4503-4507. doi:10.1016/j.bios.2011.05.010 open in new tab
  2. Akki, S. U., & Werth, C. J. (2018). Critical Review: DNA aptasensors, Are they ready for monitoring organic pollutants in natural and treated water sources? Environmental Science & Technology, 52(16), 8989-9007. doi:10.1021/acs.est.8b00558 open in new tab
  3. Aksel, E., & Jones, J. L. (2010). Advances in lead-free piezoelectric materials for sensors and actuators. Sensors (Basel, Switzerland), 10(3), 1935-1954. doi:10.3390/s100301935 open in new tab
  4. Alhadrami, H. A., Chinnappan, R., Eissa, S., Rahamn, A. A., & Zourob, M. (2017). High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Analytical Biochemistry, 525, 78-84. doi:10.1016/j.ab.2017.02.014 open in new tab
  5. Ali, A., Qadir, J., Ur Rasool, R., Sathiaseelan, A., Zwitter, A., & Crowcroft, J. (2016). Big data for development: Applications and techniques. Big Data Analytics, 1(1), 2. doi:10. 1186/s41044-016-0002-4 open in new tab
  6. AlphaScreenV R . (2018). Retrieved from http://www.perkinelmer.com/Content/RelatedMaterials/ Brochures/BRO_AlphaScreen2004.pdf open in new tab
  7. Alvarez-Risco, A., Del-Aguila-Arcentales, S., Delgado-Zegarra, J., Y añez, J. A., & Diaz- Risco, S. (2019). Doping in sports: Findings of the analytical test and its interpretation by the public. Sport Sciences for Health, 15(1), 255-257. doi:10.1007/s11332-018-0484-8 open in new tab
  8. Amiri, S., Navaee, A., Salimi, A., & Ahmadi, R. (2017). Zeptomolar detection of hg2þ based on label-free electrochemical aptasensor: One step closer to the dream of single atom detection. Electrochemistry Communications, 78, 21-25. doi:10.1016/j.elecom.2017. 03.014 open in new tab
  9. Andreu-Perez, J., Poon, C. C. Y., Merrifield, R. D., Wong, S. T. C., & Yang, G.-Z. (2015). open in new tab
  10. Big Data for health. Ieee Journal of Biomedical and Health Informatics, 19(4), 1193-1208. doi:10.1109/JBHI.2015.2450362 open in new tab
  11. Antunes, D., Jorge, N. A., Caffarena, E. R., & Passetti, F. (2018). Using RNA sequence and structure for the prediction of riboswitch aptamer: A comprehensive review of available software and tools. Frontiers in Genetics, 8, 231. doi:10.3389/fgene.2017.00231 open in new tab
  12. Aptagen LLC. (2019). Retrieved from https://www.aptagen.com/ AptaMatrix Inc. (2019). Retrieved from http://www.aptamatrix.com/ Arroyo-Curr as, N., Somerson, J., Vieira, P. A., Ploense, K. L., Kippin, T. E., & Plaxco, K. W. (2017). Real-time measurement of small molecules directly in awake, ambulatory animals. Proceedings of the National Academy of Sciences, 114(4), 645-650. doi:10.1073/ pnas.1613458114 open in new tab
  13. Avtonomov, P., & Kornienko, V. (2015). Integrated System for Detection of Dangerous Materials and Illicit Objects in Cargoes. Procedia -Social and Behavioral Sciences, 195, 2777-2785. doi:10.1016/j.sbspro.2015.06.393 open in new tab
  14. Ayotte, C., Miller, J., & Thevis, M. (2017). Challenges in modern anti-doping analytical sci- ence. In O. Rabin, & Y. Pitsiladis (Eds.), Acute topics in anti-doping. Medicine and Sport Science (Vol. 62, pp. 68-76). Basel, Switzerland: Karger. doi:10.1159/000460701 open in new tab
  15. Babendure, J. R., Adams, S. R., & Tsien, R. Y. (2003). Aptamers switch on fluorescence of triphenylmethane dyes. Journal of the American Chemical Society, 125(48), 14716-14717. doi:10.1021/ja037994o open in new tab
  16. Bae, H., Ren, S., Kang, J., Kim, M., Jiang, Y., Yuanyuan, J., … Kim, S. (2013). Sol-gel SELEX circumventing chemical conjugation of low molecular weight metabolites discov- ers aptamers selective to xanthine. Nucleic Acid Therapeutics, 23(6), 443-449. doi:10. 1089/nat.2013.0437 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 35 open in new tab
  17. Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., & Farokhzad, O. C. (2007). Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 7(10), 3065-3070. doi:10.1021/nl071546n open in new tab
  18. Bahadır, E. B., & Sezgint€ urk, M. K. (2016). Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry, 82, 286-306. doi:10.1016/j.trac.2016.06.006 open in new tab
  19. Bai, C., Lu, Z., Jiang, H., Yang, Z., Liu, X., Ding, H., … Shao, N. (2018). Aptamer selection and application in multivalent binding-based electrical impedance detection of inacti- vated H1N1 virus. Biosensors and Bioelectronics, 110, 162-167. doi:10.1016/j.bios.2018.03. 047 open in new tab
  20. Bala, R., Dhingra, S., Kumar, M., Bansal, K., Mittal, S., Sharma, R. K., & Wangoo, N. (2017). Detection of organophosphorus pesticide-Malathion in environmental samples using peptide and aptamer based nanoprobes. Chemical Engineering Journal, 311, 111-116. doi:10.1016/j.cej.2016.11.070 open in new tab
  21. Bardos, P., Bone, B., Cern ık, M., Elliott, D. W., Jones, S., & Merly, C. (2015). open in new tab
  22. Nanoremediation and international environmental restoration markets. Remediation Journal, 25(2), 83-94. doi:10.1002/rem.21426 open in new tab
  23. Barthelmebs, L., Jonca, J., Hayat, A., Prieto-Simon, B., & Marty, J. L. (2011). Enzyme-linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detec- tion of ochratoxin A in wine. Food Control, 22(5), 737-743. doi:10.1016/j.foodcont.2010. 11.005 open in new tab
  24. BasePair Biotechnologies Inc. (2019). Retrieved from https://www.basepairbio.com/ Battig, M. R., & Wang, Y. (2014). Nucleic acid aptamers for biomaterials development. In S. Kumbar, C. Laurencin, & M. Deng (Eds.), Natural and synthetic biomedical polymers (pp. 287-299). New York, NY: Elsevier Science.
  25. Bellinger, C., Jabbar, M. S. M., Zaïane, O., & Osornio-Vargas, A. (2017). A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health, 17(1), 907. doi:10.1186/s12889-017-4914-3 open in new tab
  26. Bendahan, J. (2017). Vehicle and cargo scanning for contraband. Physics Procedia, 90, 242-255. doi:10.1016/j.phpro.2017.09.003 open in new tab
  27. Berezovski, M., Drabovich, A., Krylova, S. M., Musheev, M., Okhonin, V., Petrov, A., & Krylov, S. N. (2005). Nonequilibrium capillary electrophoresis of equilibrium mixtures: A universal tool for development of aptamers. Journal of the American Chemical Society, 127(9), 3165-3171. doi:10.1021/ja042394q open in new tab
  28. Berezovski, M., Musheev, M., Drabovich, A., & Krylov, S. N. (2006). Non-SELEX selection of aptamers. Journal of the American Chemical Society, 128(5), 1410-1411. doi:10.1021/ ja056943j open in new tab
  29. Bilibana, M. P., Williams, A. R., Rassie, C., Sunday, C. E., Makelane, H., Wilson, L., … Iwuoha, E. I. (2016). Electrochemical aptatoxisensor responses on nanocomposites con- taining electro-deposited silver nanoparticles on poly (Propyleneimine) dendrimer for the detection of microcystin-LR in freshwater. Sensors, 16(11), 1901. doi:10.3390/ s16111901 open in new tab
  30. Biroccio, A., Hamm, J., Incitti, I., De Francesco, R., & Tomei, L. (2002). Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-depend- ent RNA polymerase. Journal of Virology, 76(8), 3688-3696. doi:10.1128/jvi.76.8.3688- 3696.2002 open in new tab
  31. Briggs, D. (2003). Environmental pollution and the global burden of disease. British Medical Bulletin, 68(1), 1-24. doi:10.1093/bmb/ldg019 open in new tab
  32. Bruno, J. G. (2015). Predicting the uncertain future of aptamer-based diagnostics and thera- peutics. Molecules, 20(4), 6866-6887. doi:10.3390/molecules20046866 open in new tab
  33. Bruno, J. G. (2017). Aptamers: Scope, limitations, and future prospects. In R. N. Veedu (Ed.), Aptamers: Tools for nanotherapy and molecular imaging (pp. 335). Boca Raton, FL: CRC Press. open in new tab
  34. Burbelo, P. D., Ramanathan, R., Klion, A. D., Iadarola, M. J., & Nutman, T. B. (2008). open in new tab
  35. Rapid, novel, specific, high-throughput assay for diagnosis of Loa loa infection. Journal of Clinical Microbiology, 46(7), 2298-2304. doi:10.1128/JCM.00490-08 open in new tab
  36. Cao, X., Li, S., Chen, L., Ding, H., Xu, H., Huang, Y., … Shao, N. (2009). Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Research, 37(14), 4621-4628. doi:10.1093/nar/gkp489 open in new tab
  37. Cao, X., Xia, J., Liu, H., Zhang, F., Wang, Z., & Lu, L. (2017). A new dual-signalling elec- trochemical aptasensor with the integration of "signal on/off" and "labeling/label-free" strategies. Sensors and Actuators B: Chemical, 239, 166-171. doi:10.1016/j.snb.2016.08.009 open in new tab
  38. Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14-29. doi:10.1016/j.talanta.2011.11.043 open in new tab
  39. Chen, A., & Yang, S. (2015). Replacing antibodies with aptamers in lateral flow immuno- assay. Biosensors &Amp; open in new tab
  40. Bioelectronics, 71, 230-242. doi:10.1016/j.bios.2015.04.041 open in new tab
  41. Chen, F., Chen, S. C., Zhou, J., Chen, Z. D., & Chen, F. (2015). Identification of aptamer- binding sites in Hepatitis C virus envelope glycoprotein E2. Iranian Journal of Medical Sciences, 40(1), 63. open in new tab
  42. Chen, X., Pan, Y., Liu, H., Bai, X., Wang, N., & Zhang, B. (2016). Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor. Biosensors and Bioelectronics, 79, 353-358. doi:10.1016/j.bios.2015.12.060 open in new tab
  43. Chen, Y., Li, H., Gao, T., Zhang, T., Xu, L., Wang, B., … Pei, R. (2018). Selection of DNA aptamers for the development of light-up biosensor to detect Pb (II). Sensors and Actuators B: Chemical, 254, 214-221. doi:10.1016/j.snb.2017.07.068 open in new tab
  44. Cheng, C., Chen, Y. H., Lennox, K. A., Behlke, M. A., & Davidson, B. L. (2013). In vivo SELEX for Identification of Brain-penetrating Aptamers. Molecular Therapy-Nucleic Acids, 2, e67. open in new tab
  45. Cheng, R., Liu, S., Shi, H., & Zhao, G. (2018). A highly sensitive and selective aptamer- based colorimetric sensor for the rapid detection of PCB 77. Journal of Hazardous Materials, 341, 373-380. doi:10.1016/j.jhazmat.2017.07.057 open in new tab
  46. Cho, E. J., Lee, J. W., & Ellington, A. D. (2009). Applications of aptamers as sensors. Annual Review of Analytical Chemistry (Palo Alto, Calif.), 2, 241-264. doi:10.1146/ annurev.anchem.1.031207.112851 open in new tab
  47. Clark, L. C., Jr., & Lyons, C. (1962). Electrode systems for continuous monitoring in car- diovascular surgery. Annals of the New York Academy of Sciences, 102(1), 29-45. doi:10. 1111/j.1749-6632.1962.tb13623.x open in new tab
  48. Collins, M. L., & Kapucu, N. (2008). Early warning systems and disaster preparedness and response in local government. Disaster Prevention and Management: An International Journal, 17 (5), 587-600. doi:10.1108/09653560810918621 open in new tab
  49. Contreras Jim enez, G., Eissa, S., Ng, A., Alhadrami, H., Zourob, M., & Siaj, M. (2015). open in new tab
  50. Aptamer-based label-free impedimetric biosensor for detection of progesterone. Analytical Chemistry, 87(2), 1075-1082. doi:10.1021/ac503639s open in new tab
  51. Costantini, F., Sberna, C., Petrucci, G., Reverberi, M., Domenici, F., Fanelli, C., … Caputo, D. (2016). Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. Sensors and Actuators B: Chemical, 230, 31-39. doi:10.1016/j.snb.2016.02.036 open in new tab
  52. Crivianu-Gaita, V., & Thompson, M. (2016). Aptamers, antibody scFv, and antibody Fab'fragments: An overview and comparison of three of the most versatile biosensor bio- recognition elements. Biosensors and Bioelectronics, 85, 32-45. doi:10.1016/j.bios.2016.04. 091 open in new tab
  53. Cruz-Aguado, J. A., & Penner, G. (2008). Determination of ochratoxin A with a DNA aptamer. Journal of Agricultural and Food Chemistry, 56(22), 10456-10461. doi:10.1021/ jf801957h open in new tab
  54. Csuros, M. (2018). Environmental sampling and analysis for technicians. Boca Raton, FL: CRC Press. open in new tab
  55. Cui, H., Wu, J., Eda, S., Chen, J., Chen, W., & Zheng, L. (2015). Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelec- trode array. Microchimica Acta, 182(13-14), 2361-2367. doi:10.1007/s00604-015-1556-y open in new tab
  56. Cui, L., Wu, J., & Ju, H. (2016). Label-free signal-on aptasensor for sensitive electrochem- ical detection of arsenite. Biosensors and Bioelectronics, 79, 861-865. doi:10.1016/j.bios. 2016.01.010 open in new tab
  57. Cummins, L. L., Owens, S. R., Risen, L. M., Lesnik, E. A., Freier, S. M., McGee, D., … Cook, P. D. (1995). Characterization of fully 2 0 -modified oligoribonucleotide hetero-and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Research, 23(11), 2019-2024. doi:10.1093/nar/23.11.2019 open in new tab
  58. Daniel, C., M elaïne, F., Roupioz, Y., Livache, T., & Buhot, A. (2013). Real time monitoring of thrombin interactions with its aptamers: Insights into the sandwich complex forma- tion. Biosensors and Bioelectronics, 40(1), 186-192. doi:10.1016/j.bios.2012.07.016 open in new tab
  59. Darmostuk, M., Rimpelova, S., Gbelcova, H., & Ruml, T. (2015). Current approaches in SELEX: An update to aptamer selection technology. Biotechnology Advances, 33(6), 1141-1161. doi:10.1016/j.biotechadv.2015.02.008 open in new tab
  60. Dausse, E., Taouji, S., Evad e, L., Di Primo, C., Chevet, E., & Toulm e, J. J. (2011). open in new tab
  61. HAPIscreen, a method for high-throughput aptamer identification. Journal of Nanobiotechnology, 9(1), 25. doi:10.1186/1477-3155-9-25 open in new tab
  62. Debski, P. R., Sklodowska, K., Michalski, J. A., Korczyk, P. M., Dolata, M., & Jakiela, S. (2018). Continuous recirculation of microdroplets in a closed loop tailored for screening of bacteria cultures. Micromachines, 9(9), 469. doi:10.3390/mi9090469 open in new tab
  63. Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., … Le, X. C. (2014). Aptamer binding assays for proteins: The thrombin example -A review. Analytica Chimica Acta, 837, 1-15. doi:10.1016/j.aca.2014.04.055 open in new tab
  64. Dhar, S., Gu, F. X., Langer, R., Farokhzad, O. C., & Lippard, S. J. (2008). Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug- PLGA-PEG nanoparticles. Proceedings of the National Academy of Sciences, 105(45), 17356-17361. doi:10.1073/pnas.0809154105 open in new tab
  65. Dhiman, A., Kalra, P., Bansal, V., Bruno, J. G., & Sharma, T. K. (2017). Aptamer-based point-of-care diagnostic platforms. Sensors and Actuators B: Chemical, 246, 535-553. doi: 10.1016/j.snb.2017.02.060 open in new tab
  66. Di, W. T., Du, X. W., Pan, M. F., & Wang, J. P. (2017). The SPR detection of Salmonella enteritidis in food using aptamers as recongnition elements. In IOP Conference Series: Materials Science and Engineering (Vol. 231, No. 1, p. 012114). Bristol, UK: IOP Publishing. doi:10.1088/1757-899X/231/1/012114 open in new tab
  67. Djordjevic, M. (2007). SELEX experiments: New prospects, applications and data analysis in inferring regulatory pathways. Biomolecular Engineering, 24(2), 179-189. doi:10.1016/j. bioeng.2007.03.001 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 38 open in new tab
  68. B. KUDŁAK AND M. WIECZERZAK
  69. Drabovich, A. P., Berezovski, M. V., Musheev, M. U., & Krylov, S. N. (2009). Selection of smart small-molecule ligands: The proof of principle. Analytical Chemistry, 81(1), 490-494. doi:10.1021/ac8023813 open in new tab
  70. Eissa, S., & Zourob, M. (2017). Selection and characterization of DNA aptamers for electro- chemical biosensing of carbendazim. Analytical Chemistry, 89(5), 3138-3145. doi:10. 1021/acs.analchem.6b04914 open in new tab
  71. Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), 818. doi:10.1038/346818a0 open in new tab
  72. Elshafey, R., Siaj, M., & Zourob, M. (2014). In vitro selection, characterization, and biosens- ing application of high-affinity cylindrospermopsin-targeting aptamers. Analytical Chemistry, 86(18), 9196-9203. doi:10.1021/ac502157g open in new tab
  73. Elshafey, R., Siaj, M., & Zourob, M. (2015). DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a. Biosensors and Bioelectronics, 68, 295-302. doi:10.1016/j.bios.2015.01.002 open in new tab
  74. Fan, L., Zhao, G., Shi, H., & Liu, M. (2015). A simple and label-free aptasensor based on nickel hexacyanoferrate nanoparticles as signal probe for highly sensitive detection of 17b-estradiol. Biosensors and Bioelectronics, 68, 303-309. doi:10.1016/j.bios.2015.01.015 open in new tab
  75. Fang, S., Tian, H., Li, X., Jin, D., Li, X., Kong, J., … Liu, T. (2017). Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS ONE, 2017, 12, 1-13. doi:10.1371/journal.pone.0175050 open in new tab
  76. Farzin, L., Shamsipur, M., & Sheibani, S. (2017). A review: Aptamer-based analytical strat- egies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta, 174, 619-627. doi:10.1016/j.talanta.2017.06.066 open in new tab
  77. Farzin, L., Shamsipur, M., & Tabrizi, M. A. (2015). Biomagnetic separation and preconcen- tration of trace amounts of Hg2þ in biological samples based on T-rich oligonucleotides modified magnetic beads. Analytical Methods, 7(20), 8947-8953. doi:10.1039/ C5AY01827G open in new tab
  78. Fei, A., Liu, Q., Huan, J., Qian, J., Dong, X., Qiu, B., … Wang, K. (2015). Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nano- particles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosensors and Bioelectronics, 70, 122-129. doi:10.1016/j.bios.2015.03.028 open in new tab
  79. Feng, C., Dai, S., & Wang, L. (2014). Optical aptasensors for quantitative detection of small biomolecules: A review. Biosensors and Bioelectronics, 59, 64-74. open in new tab
  80. Ferreira, C. S., Cheung, M. C., Missailidis, S., Bisland, S., & Gariepy, J. (2009). Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Research, 37(3), 866-876. doi:10.1093/nar/gkn967 open in new tab
  81. Frohnmeyer, E., Frisch, F., Falke, S., Betzel, C., & Fischer, M. (2018). Highly affine and selective aptamers against cholera toxin as capture elements in magnetic bead-based sandwich ELAA. Journal of Biotechnology, 269, 35-42. doi:10.1016/j.jbiotec.2018.01.012 open in new tab
  82. Gao, F., Gao, C., He, S., Wang, Q., & Wu, A. (2016). Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform. Biosensors and Bioelectronics, 81, 15-22. doi:10.1016/j.bios.2016.01.096 open in new tab
  83. Garc ıa-Guti errez, Y. S., Huerta-Aguilar, C. A., Thangarasu, P., & V azquez-Ramos, J. M. (2017). Ciprofloxacin as chemosensor for simultaneous recognition of Al3þ and Cu2þ by Logic Gates supported fluorescence: Application to bio-imaging for living cells. Sensors and Actuators B: Chemical, 248, 447-459. doi:10.1016/j.snb.2017.03.140 open in new tab
  84. Gavrilescu, M., Demnerov a, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollu- tants in the environment: Present and future challenges in biomonitoring, ecological 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 39 risks and bioremediation. New Biotechnology, 32(1), 147-156. doi:10.1016/j.nbt.2014.01. 001 open in new tab
  85. Gawande, B. N., Rohloff, J. C., Carter, J. D., von Carlowitz, I., Zhang, C., Schneider, D. J., & Janjic, N. (2017). Selection of DNA aptamers with two modified bases. Proceedings of the National Academy of Sciences, 114(11), 2898-2903. doi:10.1073/pnas.1615475114 open in new tab
  86. Golden, M. C., Collins, B. D., Willis, M. C., & Koch, T. H. (2000). Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. Journal of Biotechnology, 81(2-3), 167-178. doi: 10.1016/S0168-1656(00)00290-X open in new tab
  87. Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., & Kyriakidou, O. (2004). Diffusion of innovations in service organizations: Systematic review and recommendations. The Milbank Quarterly, 82(4), 581-629. doi:10.1111/j.0887-378X.2004.00325.x open in new tab
  88. Groher, F., & Suess, B. (2016). In vitro selection of antibiotic-binding aptamers. Methods, 106, 42-50. doi:10.1016/j.ymeth.2016.05.008 open in new tab
  89. Guo, L., Hu, Y., Zhang, Z., & Tang, Y. (2018). Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide. Analytical and Bioanalytical Chemistry, 410(1), 287-295. doi:10.1007/s00216-017-0720-0 open in new tab
  90. Guo, X. (2012). Surface plasmon resonance based biosensor technique: A review. Journal of Biophotonics, 5(7), 483-501. doi:10.1002/jbio.201200015 open in new tab
  91. Hasegawa, H., Taira, K. I., Sode, K., & Ikebukuro, K. (2008). Improvement of aptamer affinity by dimerization. Sensors (Basel, Switzerland), 8(2), 1090-1098. doi:10.3390/ s8021090 open in new tab
  92. Hayat, A., & Marty, J. L. (2014). Aptamer based electrochemical sensors for emerging environmental pollutants. Frontiers in Chemistry, 2, 41. doi:10.3389/fchem.2014.00041 open in new tab
  93. He, J., Liu, Y., Fan, M., & Liu, X. (2011). Isolation and identification of the DNA aptamer target to acetamiprid. Journal of Agricultural and Food Chemistry, 59(5), 1582-1586. doi: 10.1021/jf104189g open in new tab
  94. He, L., Lamont, E., Veeregowda, B., Sreevatsan, S., Haynes, C. L., Diez-Gonzalez, F., & Labuza, T. P. (2011). Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods. Chemical Science, 2(8), 1579-1582. doi:10.1039/c1sc00201e open in new tab
  95. He, M., Li, Z., Ge, Y., & Liu, Z. (2016). Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Analytical Chemistry, 88(3), 1530-1534. doi:10. 1021/acs.analchem.5b04863 open in new tab
  96. Her, J., Jo, H., & Ban, C. (2017). Enzyme-linked antibody aptamer assays based colorimet- ric detection of soluble fraction of activated leukocyte cell adhesion molecule. Sensors and Actuators B: Chemical, 242, 529-534. doi:10.1016/j.snb.2016.11.070 open in new tab
  97. Hesterberg, L. K., & Crosby, M. A. (1996). An Overview of Rapid Immunoassays. Laboratory Medicine, 27(1), 41-47. doi:10.1093/labmed/27.1.41 open in new tab
  98. Hicke, B. J., Marion, C., Chang, Y. F., Gould, T., Lynott, C. K., Parma, D., … Warren, S. (2001). Tenascin-C aptamers are generated using tumor cells and purified protein. Journal of Biological Chemistry, 276(52), 48644-48654. doi:10.1074/jbc.M104651200 open in new tab
  99. Hicke, B. J., Stephens, A. W., Gould, T., Chang, Y. F., Lynott, C. K., Heil, J., … Schmidt, P. G. (2006). Tumor targeting by an aptamer. Journal of Nuclear Medicine, 47(4), 668-678.
  100. Hoang, C. V., Oyama, M., Saito, O., Aono, M., & Nagao, T. (2013). Monitoring the pres- ence of ionic mercury in environmental water by plasmon-enhanced infrared spectros- copy. Scientific Reports, 3(1), 1175. doi:10.1038/srep01175 open in new tab
  101. Hsieh, H. V., Dantzler, J. L., & Weigl, B. H. (2017). Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays. Diagnostics, 7, 29. 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 40 open in new tab
  102. B. KUDŁAK AND M. WIECZERZAK
  103. Hu, L. Y., Niu, C. G., Wang, X. Y., Huang, D. W., Zhang, L., & Zeng, G. M. (2017). Magnetic separate" turn-on" fluorescent biosensor for Bisphenol A based on magnetic oxidation graphene. Talanta, 168, 196-202. doi:10.1016/j.talanta.2017.03.055 open in new tab
  104. Huang, K. J., Liu, Y. J., Zhang, J. Z., Cao, J. T., & Liu, Y. M. (2015).
  105. Aptamer/Au nanopar- ticles/cobalt sulfide nanosheets biosensor for 17b-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification. Biosensors and Bioelectronics, 67, 184-191. doi:10.1016/j.bios.2014.08.010 open in new tab
  106. Huang, Y., Chen, X., Duan, N., Wu, S., Wang, Z., Wei, X., & Wang, Y. (2015). Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chemistry, 166, 623-629. doi:10.1016/j.foodchem.2014.06.039 open in new tab
  107. Istrate, A., Medvecky, M., & Leumann, C. J. (2015). 2 0 -Fluorination of tricyclo-DNA con- trols furanose conformation and increases RNA affinity. Organic Letters, 17(8), 1950-1953. doi:10.1021/acs.orglett.5b00662 open in new tab
  108. Jalalian, S. H., Karimabadi, N., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2018). Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends in Food Science & Technology, 73, 45-57. doi:10.1016/j.tifs.2018.01.009 open in new tab
  109. Jauset-Rubio, M., El-Shahawi, M. S., Bashammakh, A. S., Alyoubi, A. O., & O 0 Sullivan, C. K. (2017). Advances in aptamers-based lateral flow assays. TrAC Trends in Analytical Chemistry, 97, 385-398. doi:10.1016/j.trac.2017.10.010 open in new tab
  110. Jeong, S., & Rhee Paeng, I. (2012). Sensitivity and selectivity on aptamer-based assay: The determination of tetracycline residue in bovine milk. The Scientific World Journal, 2012, 1. doi:10.1100/2012/159456 open in new tab
  111. Jin, B., Yang, Y., He, R., Park, Y. I., Lee, A., Bai, D., … Lin, M. (2018). Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sensors and Actuators B: Chemical, 276, 48-56. doi:10.1016/j.snb.2018.08.074 open in new tab
  112. Jin, C., Qiu, L., Li, J., Fu, T., Zhang, X., & Tan, W. (2016). Cancer biomarker discovery using DNA aptamers. The Analyst, 141(2), 461-466. doi:10.1039/c5an01918d open in new tab
  113. Jo, H., & Ban, C. (2016). Aptamer-nanoparticle complexes as powerful diagnostic and therapeutic tools. Experimental & Molecular Medicine, 48(5), e230. doi:10.1038/emm. 2016.44 open in new tab
  114. Joshi, R., Janagama, H., Dwivedi, H. P., Kumar, T. S., Jaykus, L. A., Schefers, J., & Sreevatsan, S. (2009). Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Molecular and Cellular Probes, 23(1), 20-28. doi:10.1016/j.mcp.2008.10.006 open in new tab
  115. Juraschek, M., Cerdas, F., Posselt, G., & Herrmann, C. (2017). Experiencing closed loop manufacturing in a learning environment. Procedia Manufacturing, 9, 57-64. doi:10. 1016/j.promfg.2017.04.046 open in new tab
  116. Justino, C. I., Duarte, A. C., & Rocha-Santos, T. A. (2017). Recent progress in biosensors for environmental monitoring: A review. Sensors, 17(12), 2918. doi:10.3390/s17122918 open in new tab
  117. Kaisti, M. (2017). Detection principles of biological and chemical FET sensors. Biosensors &Amp; open in new tab
  118. Bioelectronics, 98, 437-448. doi:10.1016/j.bios.2017.07.010 open in new tab
  119. Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362-367. open in new tab
  120. Kanoatov, M., Galievsky, V. A., Krylova, S. M., Cherney, L. T., Jankowski, H. K., & Krylov, S. N. (2015). Using nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) for simultaneous determination of concentration and equilibrium constant. Analytical Chemistry, 87(5), 3099-3106. doi:10.1021/acs.analchem.5b00171 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 41 open in new tab
  121. K€ arkk€ ainen, R. M., Drasbek, M. R., McDowall, I., Smith, C. J., Young, N. W., & Bonwick, G. A. (2011). Aptamers for safety and quality assurance in the food industry: Detection of pathogens. International Journal of Food Science & Technology, 46(3), 445-454. doi:10. 1111/j.1365-2621.2010.02470.x open in new tab
  122. Kaur, M., Rob, A., Caton-Williams, J., & Huang, Z. (2013). Biochemistry of nucleic acids functionalized with sulfur, selenium, and tellurium: Roles of the single-atom substitution. In J. L. Brumaghim, & C. A. Bayse (Eds.), Biochalcogen chemistry: The biological chemis- try of sulfur, selenium, and tellurium (pp. 89-126). Washington, DC: American Chemical Society. open in new tab
  123. Keefe, A. D., Pai, S., & Ellington, A. (2010). Aptamers as therapeutics. Nature Reviews. Drug Discovery, 9(7), 537doi:10.1038/nrd3141 open in new tab
  124. Kiilerich-Pedersen, K., Dapr a, J., Cherr e, S., & Rozlosnik, N. (2013). High sensitivity point- of-care device for direct virus diagnostics. Biosensors and Bioelectronics, 49, 374-379. doi: 10.1016/j.bios.2013.05.046 open in new tab
  125. Kim, C. H., Lee, L. P., Min, J. R., Lim, M. W., & Jeong, S. H. (2014). An indirect competi- tive assay-based aptasensor for detection of oxytetracycline in milk. Biosensors and Bioelectronics, 51, 426-430. doi:10.1016/j.bios.2013.08.003 open in new tab
  126. Klug, S. J., & Famulok, M. (1994). All you wanted to know about SELEX. Mol. Biol. Rep, 20(2), 97-107. open in new tab
  127. Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A., & F€ urste, J. P. (1996). Mirror-image RNA that binds D-adenosine. Nature Biotechnology, 14(9), 1112. doi:10.1038/nbt0996- 1112 open in new tab
  128. Koczula, K. M., & Gallotta, A. (2016). Lateral flow assays. Essays in Biochemistry, 60(1), 111-120. doi:10.1042/EBC20150012 open in new tab
  129. Krylov, S. N. (2006). Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM): A novel method for biomolecular screening. Journal of Biomolecular Screening, 11(2), 115-122. doi:10.1177/1087057105284339 open in new tab
  130. Kudłak, B., Wolska, L., & Namie snik, J. (2011). Determination of EC 50 toxicity data of selected heavy metals toward Heterocypris incongruens and their comparison to "direct- contact" and microbiotests. Environmental Monitoring and Assessment, 174(1-4), 509-516. doi:10.1007/s10661-010-1474-8 open in new tab
  131. Lai, J. C., & Hong, C. Y. (2014). Magnetic-assisted rapid aptamer selection (MARAS) for generating high-affinity DNA aptamer using rotating magnetic fields. ACS Combinatorial Science, 16(7), 321-327. doi:10.1021/co5000272 open in new tab
  132. Lee, H. J., Kim, B. C., Kim, K. W., Kim, Y. K., Kim, J., & Oh, M. K. (2009). A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. Biosensors and Bioelectronics, 24(12), 3550-3555. doi:10. 1016/j.bios.2009.05.010 open in new tab
  133. Lee, W. I., Shrivastava, S., Duy, L. T., Kim, B. Y., Son, Y. M., & Lee, N. E. (2017). A smart- phone imaging-based label-free and dual-wavelength fluorescent biosensor with high sen- sitivity and accuracy. Biosensors and Bioelectronics, 94, 643-650. doi:10.1016/j.bios.2017. 03.061 open in new tab
  134. Li, J., Jiang, H., Rao, X., Liu, Z., Zhu, H., & Xu, Y. (2019). Point-of-care testing of patho- genic bacteria at the single-colony level via gas pressure readout using aptamer-coated magnetic CuFe 2 O 4 and vancomycin-capped platinum nanoparticles. Analytical Chemistry, 91(2), 1494-1500. doi:10.1021/acs.analchem.8b04584 open in new tab
  135. Li, P., Ho, B., & Ding, J. L. (2015). Future perspectives on new approaches in pathogen detection. Biomedical Science Letters, 21(4), 165-171. doi:10.15616/BSL.2015.21.4.165 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 42 open in new tab
  136. B. KUDŁAK AND M. WIECZERZAK
  137. Li, P., Zhou, L., Wei, J., Yu, Y., Yang, M., Wei, S., & Qin, Q. (2016). Development and characterization of aptamer-based enzyme-linked aptasorbent assay for the detection of Singapore grouper iridovirus infection. Journal of Applied Microbiology, 121(3), 634-643. doi:10.1111/jam.13161 open in new tab
  138. Li, T., Dong, S., & Wang, E. (2009). Label-free colorimetric detection of aqueous mercury ion (Hg2þ) using Hg2þ-modulated G-quadruplex-based DNAzymes. Analytical Chemistry, 81(6), 2144-2149. doi:10.1021/ac900188y open in new tab
  139. Li, X., Cheng, R., Shi, H., Tang, B., Xiao, H., & Zhao, G. (2016). A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. Journal of Hazardous Materials, 304, 474-480. doi:10.1016/j.jhazmat. 2015.11.016 open in new tab
  140. Liang, G., Man, Y., Jin, X., Pan, L., & Liu, X. (2016). Aptamer-based biosensor for label- free detection of ethanolamine by electrochemical impedance spectroscopy. Analytica Chimica Acta, 936, 222-228. doi:10.1016/j.aca.2016.06.056 open in new tab
  141. Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Aptasensors: A review. Journal of Biomedical Nanotechnology, 6(2), 93-105. open in new tab
  142. Lin, B., Yu, Y., Cao, Y., Guo, M., Zhu, D., Dai, J., & Zheng, M. (2018). Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smart- phone. Biosensors and Bioelectronics, 100, 482-489. doi:10.1016/j.bios.2017.09.028 open in new tab
  143. Lin, B., Yu, Y., Li, R., Cao, Y., & Guo, M. (2016). Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sensors and Actuators B: Chemical, 229, 100-109. doi:10.1016/j.snb.2016.01.114 open in new tab
  144. Liu, D., Jia, S., Zhang, H., Ma, Y., Guan, Z., Li, J., & Yang, C. J. (2017). Integrating target- responsive hydrogel with pressuremeter readout enables simple, sensitive, user-friendly, quantitative point-of-care testing. ACS Applied Materials & Interfaces, 9(27), 22252-22258. doi:10.1021/acsami.7b05531 open in new tab
  145. Liu, D., Luo, Q., Deng, F., Li, Z., Li, B., & Shen, Z. (2017). Ultrasensitive electrochemical biosensor based on the oligonucleotide self-assembled monolayer-mediated immunosens- ing interface. Analytica Chimica Acta, 971, 26-32. doi:10.1016/j.aca.2017.03.046 open in new tab
  146. Liu, G. Q., Lian, Y. Q., Gao, C., Yu, X. F., Ming, Z. H. U., Zong, K., … Yan, Y. (2014). In vitro selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes. Journal of Integrative Agriculture, 13(5), 1121-1129. doi:10.1016/ S2095-3119(14)60766-8 open in new tab
  147. Liu, J., Morris, M. D., Macazo, F. C., Schoukroun-Barnes, L. R., & White, R. J. (2014). The current and future role of aptamers in electroanalysis. Journal of the Electrochemical Society, 161(5), H301-313. doi:10.1149/2.026405jes open in new tab
  148. Liu, S., Cheng, R., Chen, Y., Shi, H., & Zhao, G. (2018). A simple one-step pretreatment, highly sensitive and selective sensing of 17b-estradiol in environmental water samples using surface-enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 254, 1157-1164. doi:10.1016/j.snb.2017.08.003 open in new tab
  149. Liu, W., Zhang, M., Liu, X., Sharma, A., & Ding, X. (2017). A point-of-need infrared medi- ated PCR platform with compatible lateral flow strip for HPV detection. Biosensors and Bioelectronics, 96, 213-219. doi:10.1016/j.bios.2017.04.047 open in new tab
  150. Liu, Y., Lai, Y., Yang, G., Tang, C., Deng, Y., Li, S., & Wang, Z. (2017). Cd-aptamer elec- trochemical biosensor based on AuNPs/CS modified glass carbon electrode. Journal of Biomedical Nanotechnology, 13(10), 1253-1259. doi:10.1166/jbn.2017.2424 open in new tab
  151. Liu, Y., Ouyang, Q., Li, H., Chen, M., Zhang, Z. Z., & Chen, Q. (2018). A turn-on fluore- sence sensor for Hg2þ in food based on FRET between aptamers functionalized 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 43 open in new tab
  152. upconversion nanoparticles and gold nanoparticles. Journal of Agricultural and Food Chemistry, 6 (24), 6188-6195. doi:10.1021/acs.jafc.8b00546 open in new tab
  153. Lokers, R., Knapen, R., Janssen, S., van Randen, Y., & Jansen, J. (2016). Analysis of Big Data technologies for use in agro-environmental science. Environmental Modelling & Software, 84, 494-504. doi:10.1016/j.envsoft.2016.07.017 open in new tab
  154. Long, F., Zhu, A., & Shi, H. (2013). Recent advances in optical biosensors for environmen- tal monitoring and early warning. Sensors, 13(10), 13928-13948. doi:10.3390/s131013928 open in new tab
  155. Long, F., Zhu, A., Shi, H., Wang, H., & Liu, J. (2013). Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical bio- sensor. Scientific Reports, 3(1), 2308. doi:10.1038/srep02308 open in new tab
  156. Long, S. B., Long, M. B., White, R. R., & Sullenger, B. A. (2008). Crystal structure of an RNA aptamer bound to thrombin. Rna (New York, N.Y.), 14(12), 2504-2512. doi:10. 1261/rna.1239308 open in new tab
  157. Lu, C., Tang, Z., Liu, C., Kang, L., & Sun, F. (2015). Magnetic-nanobead-based competitive enzyme-linked aptamer assay for the analysis of oxytetracycline in food. Analytical and Bioanalytical Chemistry, 407(14), 4155-4163. doi:10.1007/s00216-015-8632-3 open in new tab
  158. Lu, Y., Liu, Y., Zhang, S., Wang, S., Zhang, S., & Zhang, X. (2013). Aptamer-based plas- monic sensor array for discrimination of proteins and cells with the naked eye. Analytical Chemistry, 85(14), 6571-6574. doi:10.1021/ac4014594 open in new tab
  159. Luo, Z., Wang, Y., Lu, X., Chen, J., Wei, F., Huang, Z., … Duan, Y. (2017). Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Analytica Chimica Acta, 984, 177-184. doi:10.1016/ j.aca.2017.06.037 open in new tab
  160. Ma, X., Gong, N., Zhong, L., Sun, J., & Liang, X. J. (2016). Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials, 97, 10-21. doi:10.1016/j.biomaterials. 2016.04.026 open in new tab
  161. Ma, X., Jiang, Y., Jia, F., Yu, Y., Chen, J., & Wang, Z. (2014). An aptamer-based electro- chemical biosensor for the detection of Salmonella. Journal of Microbiological Methods, 98, 94-98. open in new tab
  162. Ma, Y., Wang, S., & Wang, L. (2015). Nanomaterials for luminescence detection of nitroaro- matic explosives. Trends in Analytical Chemistry, 65, 13-21. doi:10.1016/j.trac.2014.09.007 open in new tab
  163. Macherera, M., & Chimbari, M. J. (2016). A review of studies on community based early warning systems. J amb a: Journal of Disaster Risk Studies, 8(1), a206. doi:10.4102/jamba. v8i1.206 open in new tab
  164. Madianos, L., Tsekenis, G., Skotadis, E., Patsiouras, L., & Tsoukalas, D. (2018). A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosensors and Bioelectronics, 101, 268-274. doi:10.1016/j.bios.2017.10.034 open in new tab
  165. Marton, S., Reyes-Darias, J. A., S anchez-Luque, F. J., Romero-L opez, C., & Berzal-Herranz, A. (2010). In vitro and ex vivo selection procedures for identifying potentially thera- peutic DNA and RNA molecules. Molecules, 15(7), 4610-4638. doi:10.3390/ molecules15074610 open in new tab
  166. Mascini, M. (2009). Aptamers in bioanalysis. Hoboken, NJ: John Wiley & Sons.
  167. McGown, L. B., Joseph, M. J., Pitner, J. B., Vonk, G. P., & Linn, C. P. (1995). The nucleic acid ligand. A new tool for molecular recognition. Analytical Chemistry, 67(21), 663A-668A. doi:10.1021/ac00117a002 open in new tab
  168. McKeague, M., McConnell, E. M., Cruz-Toledo, J., Bernard, E. D., Pach, A., Mastronardi, E., … DeRosa, M. C. (2015). Analysis of in vitro aptamer selection parameters. Journal of Molecular Evolution, 81(5-6), 150-161. doi:10.1007/s00239-015-9708-6 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 44 open in new tab
  169. B. KUDŁAK AND M. WIECZERZAK
  170. Mehta, J., Rouah-Martin, E., Van Dorst, B., Maes, B., Herrebout, W., Scippo, M. L., … Robbens, J. (2012). Selection and characterization of PCB-binding DNA aptamers. Analytical Chemistry, 84(3), 1669-1676. doi:10.1021/ac202960b open in new tab
  171. Miranda-Castro, R., de-los-Santos- Alvarez, N., & Lobo-Castañ on, M. J. (2017). open in new tab
  172. Characterization of aptamer-ligand complexes. In Y. Dong (Ed.), Aptamers for analytical applications: Affinity acquisition and method design (pp. 109-110). Beijing, China: Wiley. open in new tab
  173. Mishra, G. K., Sharma, V., & Mishra, R. K. (2018). Electrochemical aptasensors for food and environmental safeguarding: A review. Biosensors, 8(2), 28. doi:10.3390/bios8020028 open in new tab
  174. Misono, T. S., & Kumar, P. K. (2005). Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Analytical Biochemistry, 342(2), 312-317. doi:10.1016/j.ab.2005.04.013 open in new tab
  175. Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H. L., … Caspia, A. (2011). A gradient of childhood self-control predicts health, wealth, and pub- lic safety. PNAS, 108(7), 2693-2698. doi:10.1073/pnas.1010076108 open in new tab
  176. Mujahid, A., & Dickert, F. (2017). Surface acoustic wave (SAW) for chemical sensing appli- cations of recognition layers. Sensors, 17(12), 2716. doi:10.3390/s17122716 open in new tab
  177. Mukherjee, M., Manonmani, H. K., & Bhatt, P. (2018). Aptamer as capture agent in enzyme-linked apta-sorbent assay (ELASA) for ultrasensitive detection of Aflatoxin B1. Toxicon, 158, 28-33. doi:10.1016/j.toxicon.2018.11.001 open in new tab
  178. Muñoz, J., Montes, R., & Baeza, M. (2017). Trends in electrochemical impedance spectros- copy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. TrAC Trends in Analytical Chemistry, 97, 201-215. doi:10.1016/j.trac.2017. 08.012 open in new tab
  179. Nawrot, B., & Sipa, K. (2006). Chemical and structural diversity of siRNA molecules. Current Topics in Medicinal Chemistry, 6(9), 913-925. doi:10.2174/156802606777303658 open in new tab
  180. Neves, M. A., Blaszykowski, C., Bokhari, S., & Thompson, M. (2015). Ultra-high frequency piezoelectric aptasensor for the label-free detection of cocaine. Biosensors and Bioelectronics, 72, 383-392. doi:10.1016/j.bios.2015.05.038 open in new tab
  181. Nezlin, R. (2014). Aptamers in immunological research. Immunology Letters, 162(2), 252-255. doi:10.1016/j.imlet.2014.10.001 open in new tab
  182. Ng, E. W., Shima, D. T., Calias, P., Cunningham, E. T., Jr, Guyer, D. R., & Adamis, A. P. (2006). Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Reviews Drug Discovery, 5(2), 123. doi:10.1038/nrd1955 open in new tab
  183. Nguyen, N. L. T., Park, C. Y., Park, J. P., Kailasa, S. K., & Park, T. J. (2018). Synergistic molecular assembly of aptamer and surfactant on gold nanoparticles for colorimetric detection of trace level As 3þ ion in real samples. New Journal of Chemistry, 42(14), 11530-11538. doi:10.1039/C8NJ01097H open in new tab
  184. Nguyen, V. T., Kwon, Y. S., Kim, J. H., & Gu, M. B. (2014). Multiple GO-SELEX for effi- cient screening of flexible aptamers. Chemical Communications, 50(72), 10513-10516. doi:10.1039/C4CC03953J open in new tab
  185. Ni, X., Xia, B., Wang, L., Ye, J., Du, G., Feng, H., … Wang, W. (2017). Fluorescent apta- sensor for 17b-estradiol determination based on gold nanoparticles quenching the fluor- escence of rhodamine b. Analytical Biochemistry, 523, 17-23. doi:10.1016/j.ab.2017.01.021 open in new tab
  186. Nitsche, A., Kurth, A., Dunkhorst, A., P€ anke, O., Sielaff, H., Junge, W., … Kage, A. (2007). One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnology, 7(1), 48doi:10.1186/1472-6750-7-48 open in new tab
  187. Ohuchi, S. P., Ohtsu, T., & Nakamura, Y. (2006). Selection of RNA aptamers against recombinant transforming growth factor-b type III receptor displayed on cell surface. Biochimie, 88(7), 897-904. doi:10.1016/j.biochi.2006.02.004 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 45 open in new tab
  188. Østergaard, M. E., Dwight, T., Berdeja, A., Swayze, E. E., Jung, M. E., & Seth, P. P. (2014). Comparison of duplex stabilizing properties of 2 0 -fluorinated nucleic acid analogues with furanose and non-furanose sugar rings. The Journal of Organic Chemistry, 79(18), 8877-8881. doi:10.1021/jo501381q open in new tab
  189. Ozalp, V. C., Bayramoglu, G., Erdem, Z., & Arica, M. Y. (2015). Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functional- ized core-shell type magnetic separation. Analytica Chimica Acta, 853, 533-540. doi:10. 1016/j.aca.2014.10.010 open in new tab
  190. Pai, N. P., Vadnais, C., Denkinger, C., Engel, N., & Pai, M. (2012). Point-of-care testing for infectious diseases: Diversity, complexity, and barriers in low-and middle-income coun- tries. PLoS Medicine, 9(9), e1001306. doi:10.1371/journal.pmed.1001306 open in new tab
  191. Palchetti, I., & Mascini, M. (2008). Nucleic acid biosensors for environmental pollution monitoring. The Analyst, 133(7), 846-854. doi:10.1039/b802920m open in new tab
  192. Park, H., & Paeng, I. R. (2011). Development of direct competitive enzyme-linked aptamer assay for determination of dopamine in serum. Analytica Chimica Acta, 685(1), 65-73. doi:10.1016/j.aca.2010.11.010 open in new tab
  193. Pavski, V., & Le, X. C. (2001). Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis. Analytical Chemistry, 73(24), 6070-6076. doi:10.1021/ac0107305 open in new tab
  194. Percival, R. V., Schroeder, C. H., Miller, A. S., & Leape, J. P. (2017). Environmental regula- tion: Law, science, and policy. Alphen aan den Rijn, the Netherlands: Wolters Kluwer Law and Business.
  195. Pereira, R. L., Nascimento, I. C., Santos, A. P., Ogusuku, I. E., Lameu, C., Mayer, G., & Ulrich, H. (2018). Aptamers: Novelty tools for cancer biology. Oncotarget, 9(42), 26934. doi:10.18632/oncotarget.25260 open in new tab
  196. Pfeiffer, F., & Mayer, G. (2016). Selection and biosensor application of aptamers for small molecules. Frontiers in Chemistry, 4, 25. open in new tab
  197. Pilehvar, S., Reinemann, C., Bottari, F., Vanderleyden, E., Van Vlierberghe, S., Blust, R., … De Wael, K. (2017). A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensors and Actuators B: Chemical, 240, 1024-1035. doi:10.1016/j.snb.2016.09.075 open in new tab
  198. PubChem. (2018). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/?term=aptamer Qi, Y., Xiu, F. R., Yu, G., Huang, L., & Li, B. (2017). Simple and rapid chemiluminescence aptasensor for Hg2þ in contaminated samples: A new signal amplification mechanism. Biosensors and Bioelectronics, 87, 439-446. doi:10.1016/j.bios.2016.08.022 open in new tab
  199. Qian, Z. S., Shan, X. Y., Chai, L. J., Chen, J. R., & Feng, H. (2015). A fluorescent nanosen- sor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosensors and Bioelectronics, 68, 225-231. doi:10.1016/j.bios. 2014.12.057 open in new tab
  200. Qiao, Y., Li, J., Li, H., Fang, H., Fan, D., & Wang, W. (2016). A label-free photoelectro- chemical aptasensor for bisphenol A based on surface plasmon resonance of gold nano- particle-sensitized ZnO nanopencils. Biosensors and Bioelectronics, 86, 315-320. doi:10. 1016/j.bios.2016.06.062 open in new tab
  201. Radom, F., Jurek, P. M., Mazurek, M. P., Otlewski, J., & Jele n, F. (2013). Aptamers: Molecules of great potential. Biotechnology Advances, 31(8), 1260-1274. doi:10.1016/j.bio- techadv.2013.04.007 open in new tab
  202. Ragavan, K. V., Selvakumar, L. S., & Thakur, M. S. (2013). Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Chemical Communications, 49(53), 5960-5962. doi:10.1039/c3cc42002g 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 46 open in new tab
  203. B. KUDŁAK AND M. WIECZERZAK
  204. Rahman, M. M., Hussein, M. A., Aly, K. I., & Asiri, A. M. (2018). Thermally stable hybrid polyarylidene (azomethine-ether) s polymers (PAAP): An ultrasensitive arsenic (III) sen- sor approach. Designed Monomers and Polymers, 21(1), 82-98. doi:10.1080/15685551. 2018.1471793 open in new tab
  205. Ramos, E., Piñeiro, D., Soto, M., Abanades, D. R., Mart ın, M. E., Salinas, M., & Gonz alez, V. M. (2007). A DNA aptamer population specifically detects Leishmania infantum H2A antigen. Laboratory Investigation, 87(5), 409. doi:10.1038/labinvest.3700535 open in new tab
  206. Raston, N. H. A., Nguyen, V. T., & Gu, M. B. (2017). A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosens Bioelectron, 93, 21-25. doi: 10.1016/j.bios.2016.11.061 open in new tab
  207. Ries, O., & Vogel, S. (2016). Aptamer-liposome conjugates: Current art and future pros- pects. In R. N. Veedu (Ed.). Aptamers: Tools for nanotherapy and molecular imaging (pp. 223-251). Boca Raton, FL: CRC Press. open in new tab
  208. Rimmele, M. (2003). Nucleic acid aptamers as tools and drugs: Recent developments. Chembiochem, 4(10), 963-971. doi:10.1002/cbic.200300648 open in new tab
  209. Robati, R. Y., Arab, A., Ramezani, M., Langroodi, F. A., Abnous, K., & Taghdisi, S. M. (2016). Aptasensors for quantitative detection of kanamycin. Biosensors & Bioelectronics, 82, 162-172. doi:10.1016/j.bios.2016.04.011 open in new tab
  210. Robertson, D. L., & Joyce, G. F. (1990). Selection in vitro of an RNA enzyme that specific- ally cleaves single-stranded DNA. Nature, 344(6265), 467doi:10.1038/344467a0 open in new tab
  211. Romero, J. M. P., Hallett, S. H., & Jude, S. (2017). Leveraging big data tools and technolo- gies: Addressing the challenges of the water quality sector. Sustainability, 9, 2160. doi:10. 3390/su9122160 open in new tab
  212. Romig, T. S., Bell, C., & Drolet, D. W. (1999). Aptamer affinity chromatography: Combinatorial chemistry applied to protein purification. Journal of Chromatography B: Biomedical Sciences and Applications, 731(2), 275-284. doi:10.1016/S0378-4347(99)00243-1 open in new tab
  213. Roushani, M., & Shahdost-Fard, F. (2015). A highly selective and sensitive cocaine aptasen- sor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocom- posite as the support platform. Analytica Chimica Acta, 853, 214-221. doi:10.1016/j.aca. 2014.09.031 open in new tab
  214. Scaggiante, B., Dapas, B., Farra, R., Grassi, M., Pozzato, G., Giansante, C., … Grassi, G. (2013). Aptamers as targeting delivery devices or anti-cancer drugs for fighting tumors. Current Drug Metabolism, 14(5), 565-582. open in new tab
  215. Sch€ uling, T., Eilers, A., Scheper, T., & Walter, J. (2018). Aptamer-based lateral flow assays. Aims Bioengineering, 5(2), 78-102. doi:10.3934/bioeng.2018.2.78 open in new tab
  216. Sefah, K., Shangguan, D., Xiong, X., O'donoghue, M. B., & Tan, W. (2010). Development of DNA aptamers using Cell-SELEX. Nature Protocols, 5(6), 1169doi:10.1038/nprot.2010.66 open in new tab
  217. Selvakumar, L. S., & Thakur, M. S. (2012). Nano RNA aptamer wire for analysis of vitamin B12. Analytical Biochemistry, 427(2), 151-157. doi:10.1016/j.ab.2012.05.020 open in new tab
  218. Sevcu, A., El-Temsah, Y. S., Filip, J., Joner, E. J., Bob c ıkov a, K., & Cern ık, M. (2017). Zero- valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Environmental Science and Pollution Research International, 24(26), 21191-21202. doi:10.1007/s11356-017-9699-5 open in new tab
  219. Shamaileh, H. A., Xiang, D., Wang, T., Yin, W., Duan, W., & Shigdar, S. (2016). Stem-cell- specific aptamers for targeted cancer therapy. In Aptamers (pp. 127-164). Singapore: Pan Stanford. open in new tab
  220. Shamsipur, M., Farzin, L., Amouzadeh Tabrizi, M., & Sheibani, S. (2017). Functionalized Fe 3 O 4 /graphene oxide nanocomposites with hairpin aptamers for the separation and pre- concentration of trace Pb 2þ from biological samples prior to determination by ICP MS. 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY open in new tab
  221. Materials Science &Amp; Engineering. C, Materials for Biological Applications, 77, 459-469. doi:10.1016/j.msec.2017.03.262 open in new tab
  222. Shi, S., Yu, X., Gao, Y., Xue, B., Wu, X., Wang, X., … Zhu, H. (2014). Inhibition of hepa- titis C virus production by aptamers against the core protein. Journal of Virology, 88(4), 1990-1999. doi:10.1128/JVI.03312-13 open in new tab
  223. Shin, S., Kim, I. H., Kang, W., Yang, J. K., & Hah, S. S. (2010). An alternative to Western blot analysis using RNA aptamer-functionalized quantum dots. Bioorganic & Medicinal Chemistry Letters, 20(11), 3322-3325. doi:10.1016/j.bmcl.2010.04.040 open in new tab
  224. Shiratori, I., Akitomi, J., Boltz, D. A., Horii, K., Furuichi, M., & Waga, I. (2014). Selection of DNA aptamers that bind to influenza A viruses with high affinity and broad subtype specificity. Biochemical and Biophysical Research Communications, 443(1), 37-41. doi:10. 1016/j.bbrc.2013.11.041 open in new tab
  225. Singh, H., Graber, M. L., & Hofer, T. P. (2016). Measures to improve diagnostic safety in clinical practice. Journal of Patient Safety. doi:10.1097/PTS.0000000000000338 open in new tab
  226. Smith, J. D., & Gold, L. (2004). U.S. Patent No. 6,706,482. Washington, DC: U.S. Patent and Trademark Office.
  227. Somerson, J., & Plaxco, K. W. (2018). Electrochemical aptamer-based sensors for rapid point-of-use monitoring of the mycotoxin ochratoxin a directly in a food stream. Molecules, 23(4), 912. doi:10.3390/molecules23040912 open in new tab
  228. Someya, T., Baba, S., Fujimoto, M., Kawai, G., Kumasaka, T., & Nakamura, K. (2012). Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: Insight into RNA-binding properties of bacterial Hfq. Nucleic Acids Research, 40(4), 1856-1867. doi:10.1093/nar/gkr892 open in new tab
  229. Song, K. M., Lee, S., & Ban, C. (2012). Aptamers and their biological applications. Sensors (Basel, Switzerland), 12(1), 612-631. doi:10.3390/s120100612 open in new tab
  230. Song, M. Y., Jurng, J., Park, Y. K., & Kim, B. C. (2016). An aptamer cocktail-functionalized photocatalyst with enhanced antibacterial efficiency towards target bacteria. Journal of Hazardous Materials, 318, 247-254. doi:10.1016/j.jhazmat.2016.07.016 open in new tab
  231. Song, S., Wang, L., Li, J., Fan, C., & Zhao, J. (2008). Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 27(2), 108-117. doi:10.1016/j.trac.2007.12.004 open in new tab
  232. Song, Y., Zhang, H., Zhu, Z., & Yang, C. (2015). The clinical application of aptamers: Future challenges and prospects. In T. Weihong, & X. Fang (Eds.), Aptamers selected by cell-SELEX for theranostics (pp. 339-352). Heidelberg, Germany: Springer. open in new tab
  233. Stein, C. A., & Castanotto, D. (2017). FDA-approved oligonucleotide therapies in 2017. Molecular Therapy, 25(5), 1069-1075. doi:10.1016/j.ymthe.2017.03.023 open in new tab
  234. Stojanovic, M. N., De Prada, P., & Landry, D. W. (2001). Aptamer-based folding fluores- cent sensor for cocaine. Journal of the American Chemical Society, 123(21), 4928-4931. doi:10.1021/ja0038171 open in new tab
  235. Su, L., Fong, C. C., Cheung, P. Y., & Yang, M. (2017). Development of novel piezoelectric biosensor using pzt ceramic resonator for detection of cancer markers. In A. Rasooly, & K. E. Herold (Eds.), Biosensors and biodetection (pp. 277-291). New York, NY. Humana Press. open in new tab
  236. Svobodov a, M., Pinto, A., Nadal, P., & O' Sullivan, C. K. (2012). Comparison of different methods for generation of single-stranded DNA for SELEX processes. Analytical and Bioanalytical Chemistry, 404(3), 835-842. doi:10.1007/s00216-012-6183-4 open in new tab
  237. Sypabekova, M., Bekmurzayeva, A., Wang, R., Li, Y., Nogues, C., & Kanayeva, D. (2017). Selection, characterization, and application of DNA aptamers for detection of Mycobacterium tuberculosis secreted protein MPT64. Tuberculosis, 104, 70-78. doi:10. 1016/j.tube.2017.03.004 open in new tab
  238. B. KUDŁAK AND M. WIECZERZAK
  239. Szczepa nska, N., Kudłak, B., & Namie snik, J. (2018). Recent advances in assessing xenobiot- ics migrating from packaging material -A review. Analytica Chimica Acta, 1023, 1-21. doi:10.1016/j.aca.2018.03.045 open in new tab
  240. Szeto, K., Latulippe, D. R., Ozer, A., Pagano, J. M., White, B. S., Shalloway, D., … Craighead, H. G. (2013). Rapid-SELEX for RNA aptamers. PloS One, 8(12), e82667-11. doi:10.1371/journal.pone.0082667 open in new tab
  241. Taghdisi, S. M., Danesh, N. M., Emrani, A. S., Ramezani, M., & Abnous, K. (2015). A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosensors and Bioelectronics, 73, 245-250. doi:10.1016/j.bios.2015.05.065 open in new tab
  242. Taghdisi, S. M., Danesh, N. M., Ramezani, M., Emrani, A. S., & Abnous, K. (2018). A sim- ple and rapid fluorescent aptasensor for ultrasensitive detection of arsenic based on tar- get-induced conformational change of complementary strand of aptamer and silica nanoparticles. Sensors and Actuators B: Chemical, 256, 472-478. doi:10.1016/j.snb.2017. 10.129 open in new tab
  243. Tan, B., Zhao, H., Du, L., Gan, X., & Quan, X. (2016). A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Biosensors and Bioelectronics, 83, 267-273. doi:10.1016/j.bios.2016.04.065 open in new tab
  244. Tang, W., Wang, Z., Yu, J., Zhang, F., & He, P. (2018). Internal Calibration Potentiometric Aptasensors for Simultaneous Detection of Hg2þ, Cd2þ, and As3þ Based on a Screen- Printed Carbon Electrodes Array. Analytical Chemistry, 90(14), 8337-8344. doi:10.1021/ acs.analchem.7b04150 open in new tab
  245. Tao, Y. U. A. N., Zhong-Yuan, L. I. U., Lian-Zhe, H. U., & Guo-Bao, X. U. (2011). Electrochemical and Electrochemiluminescent Aptasensors. Chinese Journal of Analytical Chemistry, 39(7), 972-977. doi:10.1016/S1872-2040(10)60451-3 open in new tab
  246. Tereshko, V., Skripkin, E., & Patel, D. J. (2003). Encapsulating streptomycin within a small 40-mer RNA. Chemistry & Biology, 10(2), 175-187. doi:10.1016/S1074-5521(03)00024-3 open in new tab
  247. Thevis, M., Kuuranne, T., Geyer, H., & Sch€ anzer, W. (2017). Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Testing and Analysis, 9(1), 6-29. doi:10.1002/dta.1928 open in new tab
  248. Toh, S. Y., Citartan, M., Gopinath, S. C., & Tang, T. H. (2015). Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosensors and Bioelectronics, 64, 392-403. doi:10.1016/j.bios.2014.09.026 open in new tab
  249. Tombelli, S., Minunni, M., Luzi, E., & Mascini, M. (2005). Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry, 67(2), 135-141. doi:10.1016/j. bioelechem.2004.04.011 open in new tab
  250. Tombelli, S., Minunni, M., & Mascini, M. (2005). Analytical applications of aptamers. Biosens Bioelectron, 20(12), 2424-2434. doi:10.1016/j.bios.2004.11.006 open in new tab
  251. Tombelli, S., Minunni, M., & Mascini, M. (2007). Aptamers-based assays for diagnostics, environmental and food analysis. Biomolecular Engineering, 24(2), 191-200. doi:10.1016/ j.bioeng.2007.03.003 open in new tab
  252. Tong, R., Yala, L., Fan, T. M., & Cheng, J. (2010). The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells. Biomaterials, 31(11), 3043-3053. doi:10.1016/j.biomaterials.2010.01.009 open in new tab
  253. Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249(4968), 505-510. doi:10. 1126/science.2200121 open in new tab
  254. Umrao, S., Anusha, S., Jain, V., Chakraborty, B., & Roy, R. (2019). Smartphone-based kana- mycin sensing with ratiometric FRET. RSC Advances, 9(11), 6143-6151. doi:10.1039/ C8RA10035G open in new tab
  255. van den Kieboom, C. H., van der Beek, S. L., M esz aros, T., Gyurcs anyi, R. E., Ferwerda, G., & de Jonge, M. I. (2015). Aptasensors for viral diagnostics. TrAC Trends in Analytical Chemistry, 74, 58-67. doi:10.1016/j.trac.2015.05.012 open in new tab
  256. Vashist, S. K., Luppa, P. B., Yeo, L. Y., Ozcan, A., & Luong, J. H. (2015). Emerging tech- nologies for next-generation point-of-care testing. Trends in Biotechnology, 33(11), 692-705. doi:10.1016/j.tibtech.2015.09.001 open in new tab
  257. Vater, A., Jarosch, F., Buchner, K., & Klussmann, S. (2003). Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: Tailored-SELEX. Nucleic Acids Research, 31(21), 130e. doi:10.1093/nar/gng130 open in new tab
  258. Vivekananda, J., & Kiel, J. L. (2006). Anti-Francisella tularensis DNA aptamers detect tular- emia antigen from different subspecies by Aptamer-Linked Immobilized Sorbent Assay. Laboratory Investigation, 86(6), 610. doi:10.1038/labinvest.3700417 open in new tab
  259. Walter, J. G., Heilkenbrinker, A., Austerjost, J., Timur, S., Stahl, F., & Schepe, T. (2012). Aptasensors for small molecule detection. Zeitschrift F€ ur Naturforschung B, 67(10), 976-986. doi:10.5560/znb.2012-0147 open in new tab
  260. Wang, A., Zhao, H., Chen, X., Tan, B., Zhang, Y., & Quan, X. (2017). A colorimetric apta- sensor for sulfadimethoxine detection based on peroxidase-like activity of graphene/nick- el@ palladium hybrids. Analytical Biochemistry, 525, 92-99. doi:10.1016/j.ab.2017.03.006 open in new tab
  261. Wang, D., Wang, J., Liu, Z. E., Yang, X., Hu, X., Deng, J., … Yuan, Q. (2015). High-per- formance electrochemical catalysts based on three-dimensional porous architecture with conductive interconnected networks. ACS Applied Materials & Interfaces, 8(42), 28265-28273. doi:10.1021/acsami.5b08294 open in new tab
  262. Wang, R., Xiang, Y., Zhou, X., Liu, L. H., & Shi, H. (2015). A reusable aptamer-based evan- escent wave all-fiber biosensor for highly sensitive detection of Ochratoxin A. Biosensors and Bioelectronics, 66, 11-18. doi:10.1016/j.bios.2014.10.079 open in new tab
  263. Wang, W., Wong, N. K., Sun, M., Yan, C., Ma, S., Yang, Q., & Li, Y. (2015). Regenerable fluorescent nanosensors for monitoring and recovering metal ions based on photoactivat- able monolayer self-assembly and host-guest interactions. ACS Applied Materials & Interfaces, 7(16), 8868-8875. doi:10.1021/acsami.5b01509 open in new tab
  264. Wang, Y. K., Zou, Q., Sun, J. H., Wang, H. A., Sun, X., Chen, Z. F., & Yan, Y. X. (2015). Screening of single-stranded DNA (ssDNA) aptamers against a zearalenone monoclonal antibody and development of a ssDNA-based enzyme-linked oligonucleotide assay for determination of zearalenone in corn. Journal of Agricultural and Food Chemistry, 63(1), 136-141. doi:10.1021/jf503733g open in new tab
  265. Wei, W. A. N. G., & Ling-Yun, J. I. A. (2009). Progress in aptamer screening methods. Chinese Journal of Analytical Chemistry, 37(3), 454-460.
  266. Wells, K., & Bradley, D. A. (2012). A review of X-ray explosives detection techniques for checked baggage. Applied Radiation and Isotopes, 70(8), 1729-1746. doi:10.1016/j.apra- diso.2012.01.011 open in new tab
  267. Wieczerzak, M., Namie snik, J., & Kudłak, B. (2016). Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review. Environment International, 94, 341-361. doi:10.1016/j.envint.2016.05.017 open in new tab
  268. Wiedman, G. R., Zhao, Y., Mustaev, A., Ping, J., Vishnubhotla, R., Johnson, A. C., & Perlin, D. S. (2017). An aptamer-based biosensor for the azole class of antifungal drugs. mSphere, 2(4), e00274-17. doi:10.1128/mSphere.00274-17 open in new tab
  269. B. KUDŁAK AND M. WIECZERZAK
  270. Wondergem, J. A. J., Schiessel, H., & Tompitak, M. (2017). Performing SELEX experiments in silico. The Journal of Chemical Physics, 147(17), 174101doi:10.1063/1.5001394 open in new tab
  271. Wood, M., Maynard, P., Spindler, X., Lennard, C., & Roux, C. (2012). Visualization of Latent Fingermarks Using an Aptamer-Based Reagent. Angewandte Chemie International Edition, 51(49), 12272-12274. doi:10.1002/anie.201207394 open in new tab
  272. Wu, Z., Shen, H., Hu, J., Fu, Q., Yao, C., Yu, S., … Tang, Y. (2017). Aptamer-based fluor- escence-quenching lateral flow strip for rapid detection of mercury (II) ion in water sam- ples. Analytical and Bioanalytical Chemistry, 409(22), 5209-5216. doi:10.1007/s00216- 017-0491-7 open in new tab
  273. Wu, L., Lu, X., Fu, X., Wu, L., & Liu, H. (2017). Gold nanoparticles dotted reduction gra- phene oxide nanocomposite based electrochemical aptasensor for selective, rapid, sensi- tive and congener-specific PCB77 detection. Scientific Reports, 7(1), 5191. doi:10.1038/ s41598-017-05352-7 open in new tab
  274. Wu, L., Qi, P., Fu, X., Liu, H., Li, J., Wang, Q., & Fan, H. (2016). A novel electrochemical PCB77-binding DNA aptamer biosensor for selective detection of PCB77. Journal of Electroanalytical Chemistry, 771, 45-49. doi:10.1016/j.jelechem.2016.04.003 open in new tab
  275. Wu, W., Zhao, S., Mao, Y., Fang, Z., Lu, X., & Zeng, L. (2015). A sensitive lateral flow bio- sensor for Escherichia coli O157: H7 detection based on aptamer mediated strand dis- placement amplification. Analytica Chimica Acta, 861, 62-68. doi:10.1016/j.aca.2014.12. 041 open in new tab
  276. Wu, Y., Liu, L., Zhan, S., Wang, F., & Zhou, P. (2012). Ultrasensitive aptamer biosensor for arsenic (III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. The Analyst, 137(18), 4171-4178. doi:10.1039/c2an35711a open in new tab
  277. Xu, Y., Yang, L., Ye, X., He, P., & Fang, Y. (2006). An aptamer based protein biosensor by detecting the amplified impedance signal. Electroanalysis, 18(15), 1449-1456. doi:10. 1002/elan.200603566 open in new tab
  278. Yan, C., Zhang, J., Yao, L., Xue, F., Lu, J., Li, B., & Chen, W. (2018). Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chemistry, 260, 208-212. doi:10.1016/j.foodchem.2018.04.014 open in new tab
  279. Yan, X. R., Gao, X. W., Yao, L. H., & Zhang, Z. Q. (2004). Novel methods to detect cyto- kines by enzyme-linked oligonucleotide assay. Sheng wu Gong Cheng Xue ba Chinese Journal of Biotechnology, 20(5), 679-682.
  280. Y añez-Sedeño, P., Ag€ u ı, L., Villalonga, R., & Pingarr on, J. M. (2014). Biosensors in forensic analysis. A review. Analytica Chimica Acta, 823, 1-19. doi:10.1016/j.aca.2014.03.011 open in new tab
  281. Yang, X., Yang, M., Pang, B., Vara, M., & Xia, Y. (2015). Gold nanomaterials at work in biomedicine. Chemical Reviews, 115(19), 10410-10488. doi:10.1021/acs.chemrev.5b00193 open in new tab
  282. Yang, Y., Kang, M., Fang, S., Wang, M., He, L., Zhao, J., … Zhang, Z. (2015). open in new tab
  283. Electrochemical biosensor based on three-dimensional reduced graphene oxide and poly- aniline nanocomposite for selective detection of mercury ions. Sensors and Actuators B: Chemical, 214, 63-69. doi:10.1016/j.snb.2015.02.127 open in new tab
  284. Yang, Y., Yin, S., Li, Y., Lu, D., Zhang, J., & Sun, C. (2017). Application of aptamers in detection and chromatographic purification of antibiotics in different matrices. TrAC Trends in Analytical Chemistry, 95, 1-22. doi:10.1016/j.trac.2017.07.023 open in new tab
  285. Yang, Z., Qian, J., Yang, X., Jiang, D., Du, X., Wang, K., … Wang, K. (2015). A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosensors and Bioelectronics, 65, 39-46. doi:10.1016/j.bios.2014.10.004 open in new tab
  286. Yildirim, N., Long, F., He, M., Shi, H. C., & Gu, A. Z. (2014). A portable optic fiber apta- sensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environmental Science: Processes & Impacts, 16(6), 1379-1386. doi:10.1039/C4EM00046C open in new tab
  287. Yuan, F., Zhao, H., Wang, X., & Quan, X. (2017). Determination of oxytetracycline by a graphene-Gold nanoparticle-based colorimetric aptamer sensor. Analytical Letters, 50(3), 544-553. doi:10.1080/00032719.2016.1187160 open in new tab
  288. Yuan, M., Song, Z., Fei, J., Wang, X., Xu, F., Cao, H., & Yu, J. (2017). Aptasensor for lead (II) based on the use of a quartz crystal microbalance modified with gold nanoparticles. Microchimica Acta, 184(5), 1397-1403. doi:10.1007/s00604-017-2135-1 open in new tab
  289. Zal, T., & Gascoigne, N. R. (2004). Photobleaching-corrected FRET efficiency imaging of live cells. Biophysical Journal, 86(6), 3923-3393. open in new tab
  290. Zeng, G., Zhang, C., Huang, D., Lai, C., Tang, L., Zhou, Y., … Cheng, M. (2017). Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine- Hg2þ-thymine base pairs for Hg2þ detection. Biosensors and Bioelectronics, 90, 542-548. doi:10.1016/j.bios.2016.10.018 open in new tab
  291. Zhan, X., Hu, G., Wagberg, T., Zhan, S., Xu, H., & Zhou, P. (2016). Electrochemical apta- sensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe 3 O 4) nanoparticles. Microchimica Acta, 183(2), 723-729. doi:10.1007/s00604-015-1718-y open in new tab
  292. Zhang, G., Li, T., Zhang, J., & Chen, A. (2018). A simple FRET-based turn-on fluorescent aptasensor for 17b-estradiol determination in environmental water, urine and milk sam- ples. Sensors and Actuators B: Chemical, 273, 1648-1653. doi:10.1016/j.snb.2018.07.066 open in new tab
  293. Zhang, J., Li, S., Liu, F., Zhou, L., Shao, N., & Zhao, X. (2015). SELEX aptamer used as a probe to detect circulating tumor cells in peripheral blood of pancreatic cancer patients. PLoS One, 10(3), e0121920. doi:10.1371/journal.pone.0121920 open in new tab
  294. Zhang, W., Liu, Q. X., Guo, Z. H., & Lin, J. S. (2018). Practical application of aptamer- based biosensors in detection of low molecular weight pollutants in water sources. Molecules, 23(2), 344. open in new tab
  295. Zhang, Y., Wang, Y., Zhu, W., Wang, J., Yue, X., Liu, W., … Wang, J. (2017). Simultaneous colorimetric determination of bisphenol A and bisphenol S via a multi- level DNA circuit mediated by aptamers and gold nanoparticles. Microchimica Acta, 184(3), 951-959. doi:10.1007/s00604-017-2092-8 open in new tab
  296. Zhao, R., Jia, D., Wen, Y., & Yu, X. (2017). Cantilever-based aptasensor for trace level detection of nerve agent simulant in aqueous matrices. Sensors and Actuators B: Chemical, 238, 1231-1239. doi:10.1016/j.snb.2016.09.089 open in new tab
  297. Zhao, Z., Chen, H., Ma, L., Liu, D., & Wang, Z. (2015). A label-free electrochemical imped- ance aptasensor for cylindrospermopsin detection based on thionine-graphene nanocom- posites. The Analyst, 140(16), 5570-5577. doi:10.1039/C5AN00704F open in new tab
  298. Zhou, G., Wilson, G., Hebbard, L., Duan, W., Liddle, C., George, J., & Qiao, L. (2016). Aptamers: A promising chemical antibody for cancer therapy. Oncotarget, 7(12), 13446. doi:10.18632/oncotarget.7178 open in new tab
  299. Zhu, H., Suter, J., White, I., & Fan, X. (2006). Aptamer based microsphere biosensor for thrombin detection. Sensors, 6(8), 785-795. doi:10.3390/s6080785 open in new tab
  300. Zhu, Y., Zeng, G. M., Zhang, Y., Tang, L., Chen, J., Cheng, M., … He, Y. B. (2014). Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb 2þ-induced G-rich DNA conformation. The Analyst, 139(19), 5014-5020. doi:10.1039/C4AN00874J open in new tab
  301. B. KUDŁAK AND M. WIECZERZAK
  302. Zhu, Z., Song, Y., Li, C., Zou, Y., Zhu, L., An, Y., & Yang, C. J. (2014). Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification. Analytical Chemistry, 86(12), 5881-5888. doi:10.1021/ac501423g open in new tab
  303. Zhuang, Y., Deng, H., Su, Y., He, L., Wang, R., Tong, G., … Zhu, X. (2016). Aptamer- functionalized and backbone redox-responsive hyperbranched polymer for targeted drug delivery in cancer therapy. Biomacromolecules, 17(6), 2050-2062. doi:10.1021/acs.biomac. 6b00262 open in new tab
  304. Zimmermann, B., Bilusic, I., Lorenz, C., & Schroeder, R. (2010). Genomic SELEX: A dis- covery tool for genomic aptamers. Methods (San Diego, Calif.), 52(2), 125-132. doi:10. 1016/j.ymeth.2010.06.004 open in new tab
Sources of funding:
  • projekt Miniatura nr 2017/01/X/ST4/00474
Verified by:
Gdańsk University of Technology

seen 45 times

Recommended for you

Meta Tags