Assessment of copper surface coverage with corrosion inhibitor using AFM-based local electrical measurements - Publication - Bridge of Knowledge

Search

Assessment of copper surface coverage with corrosion inhibitor using AFM-based local electrical measurements

Abstract

The paper presents a new method of assessment of metal surface coverage with corrosion inhibitor and thus of inhibitor protective performance. It is based on the atomic force microscopy measurement performed in a contact mode. Apart from topography images the proposed approach allows acquisition of local DC maps and local electrical impedance spectra via application of DC bias voltage or AC perturbation signal between the conductive AFM tip and the substrate. Potentialities of this technique in inhibitor performance monitoring were illustrated on the example of copper/benzotriazole system exposed to elevated humidity environment.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 40 times
Publication version
Accepted or Published Version
License
Copyright (2017 Institute of Materials, Minerals and Mining)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CORROSION ENGINEERING SCIENCE AND TECHNOLOGY no. 52, edition 7, pages 520 - 525,
ISSN: 1478-422X
Language:
English
Publication year:
2017
Bibliographic description:
Szociński M., Darowicki K.: Assessment of copper surface coverage with corrosion inhibitor using AFM-based local electrical measurements// CORROSION ENGINEERING SCIENCE AND TECHNOLOGY. -Vol. 52, iss. 7 (2017), s.520-525
DOI:
Digital Object Identifier (open in new tab) 10.1080/1478422x.2017.1341221
Bibliography: test
  1. Finsgar M, Milosev I. Inhibition of copper corrosion by 1,2,3-ben- zotriazole: a review. Corros Sci. 2010;52:2737-2749. open in new tab
  2. Qafsaoui W, Blanc Ch, Pebere N, et al. Study of different triazole derivative inhibitors to protect copper against pitting corrosion. J Appl Electrochem. 2000;30:959-966. open in new tab
  3. Kosec T, Merl DK, Milosev I. Impedance and XPS study of benzo- triazole films formed on copper, copper-zinc alloys and zinc in chloride solution. Corros Sci. 2008;50:1987-1997. open in new tab
  4. Babic R, Metikos-Hukovic M, Loncar M. Impedance and photo- electrochemical study of surface layers on Cu and Cu-10Ni in acet- ate solution containing benzotriazole. Electrochim Acta. 1999;44:2413-2421. open in new tab
  5. Ravichandran R, Nanjundan S, Rajendran N. Effect of benzotria- zole derivatives on the corrosion of brass in NaCl solutions. Appl Surf Sci. 2004;236:241-250. open in new tab
  6. Kosec T, Milosev I, Pihlar B. Benzotriazole as an inhibitor of brass corrosion in chloride solution. Appl Surf Sci. 2007;253:8863- 8873. open in new tab
  7. Dermaj A, Hajjaji N, Joiret S, et al. Electrochemical and spectro- scopic evidences of corrosion inhibition of bronze by a triazole derivative. Electrochim Acta. 2007;52:4654-4662. open in new tab
  8. Gerengi H, Darowicki K, Bereket G, et al. Evaluation of corrosion inhibition of brass-118 in artificial seawater by benzotriazole using Dynamic EIS. Corros Sci. 2009;51:2573-2579. open in new tab
  9. Divyasree P. Effect of benzotriazole corrosion inhibitor in strength and durability properties of concrete. IJSRD. 2014;2(1): 2321-0613.
  10. Pavlovic MG, Pavlovic LjJ, Doroslovacki ID, et al. The effect of benzoic acid on the corrosion and stabilisation of electrodeposited copper powder. Hydrometallurgy. 2004;73:155-162. open in new tab
  11. Hsieh M-K, Dzombak DA, Vidic RD. Effect of tolyltriazole on the corrosion protection of copper against ammonia and disin- fectants in cooling systems. Ind Eng Chem Res. 2010;49: 7313-7322. open in new tab
  12. Rochdi A, Kassou O, Dkhireche N, et al. Inhibitive properties of 2,5-bis(n-methylphenyl)-1,3,4-oxadiazole and biocide on cor- rosion, biocorrosion and scaling controls of brass in simulated cooling water. Corros Sci. 2014;80:442-452. open in new tab
  13. Faltermeier RB. A corrosion inhibitor test for copper-based arti- facts. Stud Conserv. 1998;44:121-128. open in new tab
  14. Madsen HB. A preliminary note on the use of benzotriazole for stabilising bronze objects. Stud Conserv. 1967;12:163-166. open in new tab
  15. Madsen HB. Further remarks on the use of benzotriazole for sta- bilising bronze objects. Stud Conserv. 1971;16:120-122. open in new tab
  16. Szociński M. Evaluation of organic coatings condition with AFM- based method. Surf Innov. 2016;4(2):70-75. open in new tab
  17. Szociński M, Darowicki K. Local impedance spectra of organic coatings. Polym Degrad Stabil. 2013;98:261-265. open in new tab
  18. Darowicki K, Szociński M, Zieliński A. Assessment of organic coating degradation via local impedance imaging. Electrochim Acta. 2010;55:3741-3748. open in new tab
  19. Szociński M, Darowicki K, Schaefer K. Identification and localiz- ation of organic coating degradation onset by impedance imaging. Polym Degrad Stabil. 2010;95:960-964. open in new tab
  20. Darowicki K, Szociński M, Schaefer K, et al. Investigation of mor- phological and electrical properties of the PMMA coating upon exposure to UV irradiation based on AFM studies. Prog Org Coat. 2011;71:65-71. open in new tab
  21. Szociński M, Darowicki K, Schaefer K. Application of impedance imaging to evaluation of organic coating degradation at a local scale. J Coat Technol Res. 2013;10:65-72. open in new tab
  22. Szociński M, Darowicki K. Local properties of organic coatings close to glass transition temperature. Prog Org Coat. 2014;77: 2007-2011. open in new tab
  23. Shao R, Kalinin SV, Bonnell DA. Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl Phys Lett. 2003;82:1869-1871. open in new tab
  24. O'Hayre R, Lee M, Prinz FB. Ionic and electronic impedance ima- ging using atomic force microscopy. J Appl Phys. 2004;95:8382- 8392. open in new tab
  25. O'Hayre R, Feng G, Nix WD, et al. Quantitative impedance measurement using atomic force microscopy. J Appl Phys. 2004;96:3540-3549. open in new tab
  26. Wexler A, Hasegawa S. Relative humidity-temperature relation- ships of some saturated salt solutions in the temperature range 0°to 50°C. J Res Nat Stand. 1954;53(1):19-26. open in new tab
Verified by:
Gdańsk University of Technology

seen 86 times

Recommended for you

Meta Tags