Broadband Compact Single-Layer Magic-T Junction with Separation of DC Signals between All Ports - Publication - Bridge of Knowledge

Search

Broadband Compact Single-Layer Magic-T Junction with Separation of DC Signals between All Ports

Abstract

A novel structure for a four-port microstrip magic-T junction is presented. The device is composed of microstrip and slotline circuits etched onto two sides of a dielectric substrate. The device is extremely compact and occupies an area more than three times smaller than similar structures recently reported in the literature. The novelty of the device lies in the use of microstrip/slotline transitions for both input ports: summation (in-phase) port and difference (out-of-phase) port. This ensures electrical separation for DC signals between all four ports, a wide operation band and a very small size for the device. The fabricated prototype operates in a 95% fractional bandwidth with return losses better than 10 dB and isolation between input ports better than 35 dB. The insertion losses for the excitation at the summation port are about 0.8 dB and for the excitation at the difference port are about 1.4 dB. In the operation band of the device, the maximum amplitude imbalance is equal to ±0.3 dB, whereas the maximum phase imbalance is equal to ±4deg. .

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 61 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
RADIOENGINEERING no. 27, edition 4, pages 1064 - 1069,
ISSN: 1210-2512
Language:
English
Publication year:
2018
Bibliographic description:
Marynowski W.: Broadband Compact Single-Layer Magic-T Junction with Separation of DC Signals between All Ports// RADIOENGINEERING. -Vol. 27, iss. 4 (2018), s.1064-1069
DOI:
Digital Object Identifier (open in new tab) 10.13164/re.2018.1064
Bibliography: test
  1. POZAR, D. Microwave Engineering. 3rd ed., New York (USA): Wiley, 2005. ISBN: 0-471-44878-8.
  2. DENG, K. L., WANG H. A miniature broad-band pHEMT MMIC balanced distributed doubler. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 4, p. 1257-1261. DOI: 10.1109/TMTT.2003.809665 open in new tab
  3. MAAS, S. A. Microwave Mixers. London (UK): Artech House, 1993. ISBN: 0-89006-605-1
  4. MARCH, S. A wideband stripline hybrid ring (correspondence). IEEE Transactions on Microwave Theory and Techniques, 1968, vol. 16, no. 6, p. 361-361. DOI: 10.1109/TMTT.1968.1126693 open in new tab
  5. HO, C. H., FAN, L., CHANG, K. Broad-band uniplanar hybrid- ring and branch-line couplers. IEEE Transactions on Microwave Theory and Techniques, 1993, vol. 41, no. 12, p. 2116-2125. DOI: 10.1109/22.260695 open in new tab
  6. HO, C. H., FAN, L., CHANG, K. New uniplanar coplanar waveg- uide hybrid-ring couplers and magic-T's. IEEE Transactions on Mi- crowave Theory and Techniques, 1994, vol. 42, no. 12, p. 2440-2448. DOI: 10.1109/22.339779 open in new tab
  7. WANG, T., WU, K. Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC's. IEEE Transactions on Microwave Theory and Tech- niques, 1999, vol. 47, no. 2, p. 198-206. DOI: 10.1109/22.744295 open in new tab
  8. MO, T. T., XUE, Q., CHAN, C. H. A broadband compact microstrip rat-race hybrid using a novel CPW inverter. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 1, p.161-167. DOI: 10.1109/TMTT.2006.888938 open in new tab
  9. KIM, J. P., PARK, W. S. Novel configurations of planar multi- layer magic-T using microstrip-slotline transitions. IEEE Transac- tions on Microwave Theory and Techniques, 2002, vol. 50, no. 7, p. 1683-1688. DOI: 10.1109/TMTT.2002.800387 open in new tab
  10. U-YEN, K., WOLLACK, E. J., PAPAPOLYMEROU, J., et al. A broadband planar magic-T using microstrip-slotline transitions. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 1, p. 172-177. DOI: 10.1109/TMTT.2007.912213 open in new tab
  11. OKABE, H., CALOZ, C., ITOH, T. A compact enhanced- bandwidth hybrid ring using an artificial lumped-element left- handed transmission-line section. IEEE Transactions on Mi- crowave Theory and Techniques, 2004, vol. 52, no. 3, p. 798-804. DOI: 10.1109/TMTT.2004.823541 open in new tab
  12. SETTALURI, R. K., SUNDBERG, G., WEISSHAAR, A., et al. Compact folded line rat-race hybrid couplers. IEEE Mi- crowave and Guided Wave Letters, 2000, vol. 10, no. 2, p. 61-63. DOI: 10.1109/75.843101 open in new tab
  13. ECCLESTON, K. W., ONG, S. H. M. Compact planar microstripline branch-line and rat-race couplers. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 10, p. 2119-2125. DOI: 10.1109/TMTT.2003.817442 open in new tab
  14. KUO, J. T., WU, J. S., CHIOU, Y. C. Miniaturized rat race coupler with suppression of spurious passband. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 1, p. 46-48. DOI: 10.1109/LMWC.2006.887254 open in new tab
  15. SUNG, Y. J., AHN, C. S., KIM, Y. S. Size reduction and har- monic suppression of rat-race hybrid coupler using defected ground structure. IEEE Microwave and Wireless Components Letters, 2004, vol. 14, no. 1, p. 7-9. DOI: 10.1109/LMWC.2003.821499 open in new tab
  16. DAVIDOVITZ, M. A compact planar magic-T junction with aperture- coupled difference port. IEEE Microwave and Guided Wave Letters, 1997, vol. 7, no. 8, p. 217-218. DOI: 10.1109/75.605482 open in new tab
  17. HE, F. F., WU, K., HONG, W., et al. A planar magic-T us- ing substrate integrated circuits concept. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 6, p. 386-388. DOI: 10.1109/LMWC.2008.922596 open in new tab
  18. MARYNOWSKI, W., MAZUR, J. Investigation of multilayer magic-T configurations using novel microstrip-slotline transitions. Progress In Electromagnetics Research, PIER, 2012, vol. 129, p. 91-108. DOI: 10.2528/PIER12032303 open in new tab
  19. XIAO, L., PENG, H., YANG, T. The design of a novel com- pact ultra-wideband (UWB) power divider. Progress In Electro- magnetics Research Letters, PIER L, 2014, vol. 44, p. 43-46. DOI: 10.2528/PIERL13111205 open in new tab
  20. BIALKOWSKI, M. E., WANG, Y. Wideband microstrip 180 • hybrid utilizing ground slots. IEEE Microwave and Wire- less Components Letters, 2010, vol. 20, no. 9, p. 495-497. DOI: 10.1109/LMWC.2010.2056677 open in new tab
  21. HENIN, B., ABBOSH, A. Wideband hybrid using three-line cou- pled structure and microstrip-slot transitions. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 7, p. 335-337. DOI: 10.1109/LMWC.2013.2262930 open in new tab
  22. [22] High Frequency Structure Simulator (HFSS), 2016. http://www.ansoft.com/. open in new tab
  23. SHUPPERT, B. Microstrip/slotline transitions: modeling and experimental investigation. IEEE Transactions on Microwave Theory and Techniques, 1988, vol. 36, no. 8, p. 1272-1282. DOI: 10.1109/22.3669 open in new tab
  24. ZINIERIS, M. M., SLOAN, R., DAVIS, L. E. A broadband microstrip-to-slot-line transition. Microwave and Optical Technology Letters, 1998, vol. 18, no. 5, p. 339-342. DOI: 10.1002/(SICI)1098- 2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9 open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 100 times

Recommended for you

Meta Tags