Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives - Publication - Bridge of Knowledge

Search

Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives

Abstract

Mineral carbonation using natural minerals or industrial wastes is a safe and promising strategy for CO2 sequestration. Application of industrial wastes for this purpose has significant ecological and environmental value, which is one of the key green technologies in the global carbon mitigation. This review summarizes the current research status of CO2 mineralization by industrial wastes. This work surveys the mechanisms and capacities of CO2 mineralization using different industrial wastes (mainly steel slags, blast furnace slags, coal fly ash, waste gypsum, and red mud), evaluates the influence of carbonation pathways and process parameters on the CO2 sequestration capacity, and analyzes the current industrial application status of CO2 sequestration using industrial wastes. Direct aqueous carbonation and indirect carbonation are the two most studied and promising mineralization routes. The leaching-mineralization cycle process has great potential for industrial application, especially for the treatment of coal fly ash, steel slag and other wastes containing calcium oxide, owing to the stable cycle performance of the absorbers. Researchers pay more attention to CO2 mineralization by steel slag compared to other wastes, and the capacity of CO2 mineralization varies greatly for different wastes. Several reports already reported carbonation effectiveness up to 100%. A CO2 sequestration capacity reached 536 g/kg for steel slag and 361 g/kg of blast furnace slag, revealing superior properties of these materials. CO2 sequestration using industrial wastes benefits CO2 emission reduction and comprehensive utilization of industrial wastes. To overcome the problem of the high energy consumption for regeneration of absorbent, a novel integrated CO2 absorption-mineralization process is currently widely studied. A possibility of co-production of value-added products - like different types of zeolite or lithium orthosilicate based adsorbents was highlighted, improving the economic balance of the overall process. More studies on pilot scale should be performed, to fully confirm the feasibility of developed technologies. Application of these developments is still faced with significant issues, including low carbonation efficiency, poor product quality, high process cost, and insufficient mass and heat transfer.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Authors (6)

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF CLEANER PRODUCTION no. 434,
ISSN: 0959-6526
Language:
English
Publication year:
2024
Bibliographic description:
Lin X., Zhang Y., Liu H., Boczkaj G., Cao Y., Wang C.: Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives// JOURNAL OF CLEANER PRODUCTION -Vol. 434, (2024), s.140258-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jclepro.2023.140258
Sources of funding:
  • COST_FREE
Verified by:
Gdańsk University of Technology

seen 48 times

Recommended for you

Meta Tags