Catalytic Activity of Nickel and Ruthenium–Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process - Publication - Bridge of Knowledge

Search

Catalytic Activity of Nickel and Ruthenium–Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process

Abstract

Dry reforming of methane (DRM) is an eco-friendly method of syngas production due to the utilization of two main greenhouse gases—methane and carbon dioxide. An industrial application of methane dry reforming requires the use of a catalyst with high activity, stability over a long time, and the ability to catalyze a reaction, leading to the needed a hydrogen/carbon monoxide ratio. Thus, the aim of the study was to investigate the effect of support and noble metal particles on catalytic activity, stability, and selectivity in the dry reforming process. Ni and Ni–Ru based catalysts were prepared via impregnation and precipitation methods on SiO2, ZrO2, Al2O3, and MgAl2O4 supports. The obtained catalysts were characterized using X-ray diffractometry (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), Brunauer–Emmett–Teller (BET) specific surface area, and elemental carbon-hydrogen-nitrogen-sulphur analysis (CHNS) techniques. The catalytic activity was investigated in the carbon dioxide reforming of a methane process at 800 ◦C. Catalysts supported on commercial Al2O3 and spinel MgAl2O4 exhibited the highest activity and stability under DRM conditions. The obtained results clearly indicate that differences in catalytic activity result from the dispersion, size of an active metal (AM), and interactions of the AM with the support. It was also found that the addition of ruthenium particles enhanced the methane conversion and shifted the H2/CO ratio to lower values.

Citations

  • 3 4

    CrossRef

  • 0

    Web of Science

  • 3 3

    Scopus

Cite as

Full text

download paper
downloaded 99 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Catalysts no. 9, pages 1 - 13,
ISSN: 2073-4344
Language:
English
Publication year:
2019
Bibliographic description:
Wysocka I., Rogala A., Hupka J.: Catalytic Activity of Nickel and Ruthenium–Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process// Catalysts. -Vol. 9, iss. 6 (2019), s.1-13
DOI:
Digital Object Identifier (open in new tab) 10.3390/catal9060540
Bibliography: test
  1. Arora, S.; Prasad, R. An Overview on Dry Reforming of Methane: Strategies to Reduce Carbonaceous Deactivation of Catalysts. RSC Adv. 2016, 6, 108668-108688. [CrossRef] open in new tab
  2. Azizi, Z.; Rezaeimanesh, M.; Tohidian, T.; Rahimpour, M.R. Dimethyl Ether: A Review of Technologies and Production Challenges. Chem. Eng. Process. Process Intensif. 2014, 82, 150-172. [CrossRef] open in new tab
  3. Rostrup-Nielsen, J.R. Production of Synthesis Gas. Catal. Today 1993, 18, 305-324. [CrossRef] open in new tab
  4. Mortensen, P.M.; Dybkjaer, I. Industrial Scale Experience on Steam Reforming of CO 2 -Rich Gas. Appl. Catal. A Gen. 2015, 495, 141-151. [CrossRef] open in new tab
  5. Abdullah, B.; Abd Ghani, N.A.; Vo, D.V.N. Recent Advances in Dry Reforming of Methane over Ni-Based Catalysts. J. Clean. Prod. 2017, 162, 170-185. [CrossRef] open in new tab
  6. Luyben, W.L. Design and Control of the Dry Methane Reforming Process. Ind. Eng. Chem. Res. 2014, 53, 14423-14439. [CrossRef] open in new tab
  7. Chein, R.Y.; Chen, Y.C.; Yu, C.T.; Chung, J.N. Thermodynamic Analysis of Dry Reforming of CH 4 with CO 2 at High Pressures. J. Nat. Gas Sci. Eng. 2015, 26, 617-629. [CrossRef] open in new tab
  8. Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Shahul Hamid, M.Y. A Review on Catalyst Development for Dry Reforming of Methane to Syngas: Recent Advances. Renew. Sustain. Energy Rev. 2019, 108, 175-193. [CrossRef] open in new tab
  9. Jang, W.J.; Shim, J.O.; Kim, H.M.; Yoo, S.Y.; Roh, H.S. A Review on Dry Reforming of Methane in Aspect of Catalytic Properties. Catal. Today 2018, 324, 15-26. [CrossRef] open in new tab
  10. Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst Design for Dry Reforming of Methane: Analysis Review. Renew. Sustain. Energy Rev. 2018, 82, 2570-2585. [CrossRef] open in new tab
  11. Xu, Y.; Lin, Q.; Liu, B.; Jiang, F.; Xu, Y.; Liu, X. A Facile Fabrication of Supported Ni/SiO 2 Catalysts for Dry Reforming of Methane with Remarkably Enhanced Catalytic Performance. Catalysts 2019, 9, 183. [CrossRef] open in new tab
  12. Gangurde, L.S.; Sturm, G.S.J.; Valero-romero, M.J.; Mallada, R.; Santamaria, J.; Stankiewicz, A.; Stefanidis, G. Synthesis, Characterization, and Application of Ruthenium-Doped SrTiO 3 Perovskite Catalysts for Microwave-Assisted Methane Dry Reforming. Chem. Eng. Process. Process. Intensif. 2018, 127, 178-190. [CrossRef] open in new tab
  13. Zhou, H.; Zhang, T.; Sui, Z.; Zhu, Y.A.; Han, C.; Zhu, K.; Zhou, X. A Single Source Method to Generate Ru-Ni-MgO Catalysts for Methane Dry Reforming and the Kinetic Effect of Ru on Carbon Deposition and Gasification. Appl. Catal. B Environ. 2018, 233, 143-159. [CrossRef] open in new tab
  14. Jabbour, K.; El Hassan, N.; Casale, S.; Estephane, J.; El Zakhem, H. Promotional Effect of Ru on the Activity and Stability of Co/SBA-15 Catalysts in Dry Reforming of Methane. Int. J. Hydrogen Energy 2014, 39, 7780-7787. [CrossRef] open in new tab
  15. Li, D.; Nakagawa, Y.; Tomishige, K. Methane Reforming to Synthesis Gas over Ni Catalysts Modified with Noble Metals. Appl. Catal. A Gen. 2011, 408, 1-24. [CrossRef] open in new tab
  16. Dou, Y.; Pang, Y.; Gu, L.; Ding, Y.; Jiang, W.; Feng, X.; Ji, W.; Au, C.T. Core-Shell Structured Ru-Ni@SiO 2 : Active for Partial Oxidation of Methane with Tunable H 2 /CO Ratio. J. Energy Chem. 2018, 27, 883-889. [CrossRef] open in new tab
  17. Al-Fatesh, A.S.; Arafat, Y.; Atia, H.; Ibrahim, A.A.; Ha, Q.L.M.; Schneider, M.; M-Pohl, M.; Fakeeha, A.H. CO 2 -Reforming of Methane to Produce Syngas over Co-Ni/SBA-15 Catalyst: Effect of Support Modifiers (Mg, La and Sc) on Catalytic Stability. J. CO 2 Util. 2017, 21, 395-404. [CrossRef] open in new tab
  18. Rouibah, K.; Barama, A.; Benrabaa, R.; Guerrero-caballero, J.; Kane, T. Dry Reforming of Methane on Nickel-Chrome, Nickel-Cobalt and Nickel-Manganese Catalysts. Int. J. Hydrogen Energy 2017, 42, 29725-29734. [CrossRef] open in new tab
  19. Yao, L.; Galvez, M.E.; Hu, C.; Da Costa, P. Synthesis Gas Production via Dry Reforming of Methane over Manganese Promoted Nickel/Cerium-Zirconium Oxide Catalyst. Ind. Eng. Chem. Res. 2018, 57, 16645-16656. [CrossRef] open in new tab
  20. Liu, H.; Hadjltaief, H.B.; Benzina, M.; Gálvez, M.E.; Da Costa, P. Natural Clay Based Nickel Catalysts for Dry Reforming of Methane: On the Effect of Support Promotion (La, Al, Mn). Int. J. Hydrogen Energy 2019, 4, 246-255. [CrossRef] open in new tab
  21. Das, S.; Ashok, J.; Bian, Z.; Dewangan, N.; Wai, M.H.; Du, Y.; Borgna, A.; Hidajat, K.; Kawi, S. Silica-Ceria Sandwiched Ni Core-Shell Catalyst for Low Temperature Dry Reforming of Biogas: Coke Resistance and Mechanistic Insights. Appl. Catal. B Environ. 2018, 230, 220-236. [CrossRef] open in new tab
  22. Kim, S.M.; Abdala, P.M.; Margossian, T.; Hosseini, D.; Foppa, L.; Armutlulu, A.; Van Beek, W.; Comas-Vives, A.; Copéret, C.; Müller, C. Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts. J. Am. Chem. Soc. 2017, 139, 1937-1949. [CrossRef] open in new tab
  23. Margossian, T.; Larmier, K.; Kim, S.M.; Krumeich, F.; Müller, C.; Copéret, C. Supported Bimetallic NiFe Nanoparticles through Colloid Synthesis for Improved Dry Reforming Performance. ACS Catal. 2017, 7, 6942-6948. [CrossRef] open in new tab
  24. Świrk, K.; Gálvez, M.E.; Motak, M.; Grzybek, T.; Rønning, M.; Da Costa, P. Dry Reforming of Methane over Zr-and Y-Modified Ni/Mg/Al Double-Layered Hydroxides. Catal. Commun. 2018, 117, 26-32. [CrossRef] open in new tab
  25. Feng, X.; Liu, J.; Zhang, P.; Zhang, Q.; Xu, L.; Zhao, L.; Song, X.; Gao, L. Highly Coke Resistant Mg-Ni/Al 2 O 3 Catalyst Prepared via a Novel Magnesiothermic Reduction for Methane Reforming Catalysis with CO 2 : The Unique Role of Al-Ni Intermetallics. Nanoscale 2019, 11, 1262-1272. [CrossRef] open in new tab
  26. Nakhaei Pour, A.; Mousavi, M. Combined Reforming of Methane by Carbon Dioxide and Water: Particle Size Effect of Ni-Mg Nanoparticles. Int. J. Hydrogen Energy 2015, 40, 12985-12992. [CrossRef] open in new tab
  27. Nandini, A.; Pant, K.K.; Dhingra, S.C. K-, CeO 2 -, and Mn-Promoted Ni/Al 2 O 3 Catalysts for Stable CO 2 Reforming of Methane. Appl. Catal. A Gen. 2005, 290, 166-174. [CrossRef] open in new tab
  28. Bailey, K.M.; Campbell, T.K.; Falconer, J.L. Potassium Promotion of Ni/Al 2 O 3 Catalysts. Appl. Catal. 1989, 54, 159-175. open in new tab
  29. Németh, M.; Srankó, D.; Károlyi, J.; Somodi, F.; Schay, Z.; Sáfrán, G.; Sajó, I.; Horváth, A. Na-Promoted Ni/ZrO 2 Dry Reforming Catalyst with High Efficiency: Details of Na 2 O-ZrO 2 -Ni Interaction Controlling Activity and Coke Formation. Catal. Sci. Technol. 2017, 7, 5386-5401. [CrossRef] open in new tab
  30. Wang, Y.; Yao, L.; Wang, Y.; Wang, S.; Zhao, Q.; Mao, D.; Hu, C. Low-Temperature Catalytic CO 2 Dry Reforming of Methane on Ni-Si/ZrO 2 Catalyst. ACS Catal. 2018, 8, 6495-6506. [CrossRef] open in new tab
  31. Galhenage, R.P.; Yan, H.; Tenney, S.A.; Park, N.; Henkelman, G.; Albrecht, P.; Mullins, D.R.; Chen, D.A. Understanding the Nucleation and Growth of Metals on TiO 2 : Co Compared to Au, Ni, and Pt. J. Phys. Chem. C 2013, 117, 7191-7201. [CrossRef] open in new tab
  32. Zhang, R.; Xia, G.; Li, M.; Wu, Y.; Nie, H.; Li, D. Effect of Supports on the Performance of Ni-Based Catalysts in Methane Dry Reforming. J. Fuel Chem. Technol. 2015, 43, 1359-1365. [CrossRef] open in new tab
  33. Zhang, X.; Zhang, Q.; Tsubaki, N.; Tan, Y.; Han, Y. Carbon Dioxide Reforming of Methane over Ni Nanoparticles Incorporated into Mesoporous Amorphous ZrO 2 Matrix. Fuel 2015, 147, 243-252. [CrossRef] open in new tab
  34. Wang, F.; Xu, L.; Shi, W. Syngas Production from CO 2 Reforming with Methane over Core-Shell Ni@SiO 2 Catalysts. J. CO 2 Util. 2016, 16, 318-327. [CrossRef] open in new tab
  35. Ferreira-Aparicio, P.; Rodriguez-Ramos, I.; Anderson, J.A.; Guerrero-Ruiz, A. Mechanistic Aspects of the Dry Reforming of Methane over Ruthenium Catalysts. Appl. Catal. A Gen. 2000, 202, 183-196. [CrossRef] open in new tab
  36. Frontera, P.; Macario, A.; Aloise, A.; Antonucci, P.L.; Giordano, G.; Nagy, J.B. Effect of Support Surface on Methane Dry-Reforming Catalyst Preparation. Catal. Today 2013, 218-219, 18-29. [CrossRef] open in new tab
  37. Wang, F.; Han, B.; Zhang, L.; Xu, L.; Yu, H.; Shi, W. CO 2 Reforming with Methane over Small-Sized Ni@SiO 2 Catalysts with Unique Features of Sintering-Free and Low Carbon. Appl. Catal. B Environ. 2018, 235, 26-35. [CrossRef] open in new tab
  38. Habibi, N.; Wang, Y.; Arandiyan, H.; Rezaei, M. Effect of Substitution by Ni in MgAl 2 O 4 Spinel for Biogas Dry Reforming. Int. J. Hydrogen Energy 2017, 42, 24159-24168. [CrossRef] open in new tab
  39. Zarei, M.; Meshkani, F.; Rezaei, M. Preparation of Mesoporous Nanocrystalline Ni-MgAl 2 O 4 Catalysts by Sol-Gel Combustion Method and Its Applications in Dry Reforming Reaction. Adv. Powder Technol. 2016, 27, 1963-1970. [CrossRef] open in new tab
  40. Nazemi, M.K.; Sheibani, S.; Rashchi, F.; Gonzalez-Delacruz, V.M.; Caballero, A. Preparation of Nanostructured Nickel Aluminate Spinel Powder from Spent NiO/Al 2 O 3 Catalyst by Mechano-Chemical Synthesis. Adv. Powder Technol. 2012, 23, 833-838. [CrossRef] open in new tab
  41. Park, J.; Yeo, S.; Chang, T. Effect of Supports on the Performance of Co-Based Catalysts in Methane Dry Reforming. J. CO 2 Util. 2018, 26, 465-475. [CrossRef] open in new tab
  42. Han, J.W.; Park, J.S.; Choi, M.S.; Lee, H. Uncoupling the Size and Support Effects of Ni Catalysts for Dry Reforming of Methane. Appl. Catal. B Environ. 2017, 203, 625-632. [CrossRef] open in new tab
  43. Lemonidou, A.A.; Vasalos, I.A. Carbon Dioxide Reforming of Methane Over. Appl. Catal. A Gen. 2002, 228, 227-235. open in new tab
  44. Pakhare, D.; Spivey, J. A Review of Dry (CO 2 ) Reforming of Methane over Noble Metal Catalysts. Chem. Soc. Rev. 2014, 43, 7813-7837. [CrossRef] open in new tab
  45. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Sources of funding:
  • Umowa z PGNiG nr CS/JB/18/159351
Verified by:
Gdańsk University of Technology

seen 231 times

Recommended for you

Meta Tags