Charge density wave and large nonsaturating magnetoresistance in YNiC2 and LuNiC2 - Publication - Bridge of Knowledge

Search

Charge density wave and large nonsaturating magnetoresistance in YNiC2 and LuNiC2

Abstract

We report a study of physical properties of two quasi-low-dimensional metals YNiC2 and LuNiC2 including the investigation of transport, magnetotransport, galvanomagnetic, and specific heat properties. In YNiC2 we reveal two subsequent transitions associated with the formation of weakly coupled charge density wave at TCDW=318K and its locking in with the lattice at T1=275K. These characteristic temperatures follow the previously proposed linear scaling with the unit cell volume, demonstrating its validity extended beyond the lanthanide-based RNiC2. We also find that, in the absence of magnetic ordering able to interrupt the development of charge density wave, the Fermi surface nesting leads to opening of small pockets, containing high-mobility carriers. This effect gives rise to substantial enhancement of magnetoresistance, reaching 470% for YNiC2 and 50% for LuNiC2 at T=1.9K and B=9T.

Citations

  • 1 5

    CrossRef

  • 0

    Web of Science

  • 1 5

    Scopus

Cite as

Full text

download paper
downloaded 94 times
Publication version
Accepted or Published Version
License
Copyright (2019 American Physical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PHYSICAL REVIEW B no. 99, pages 1 - 10,
ISSN: 2469-9950
Language:
English
Publication year:
2019
Bibliographic description:
Kolincio K., Roman M., Klimczuk T.: Charge density wave and large nonsaturating magnetoresistance in YNiC2 and LuNiC2// PHYSICAL REVIEW B. -Vol. 99, iss. 20 (2019), s.1-10
DOI:
Digital Object Identifier (open in new tab) 10.1103/physrevb.99.205127
Bibliography: test
  1. P. Monceau, Adv. Phys. 61, 325 (2012). open in new tab
  2. G. Grüner, Density Waves in Solids (Addison-Wesley, London, 2000). open in new tab
  3. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988). open in new tab
  4. S. Caprara, C. Di Castro, G. Seibold, and M. Grilli, Phys. Rev. B 95, 224511 (2017). open in new tab
  5. Y. Caplan and D. Orgad, Phys. Rev. Lett. 119, 107002 (2017). open in new tab
  6. F. Laliberté, M. Frachet, S. Benhabib, B. Borgnic, T. Loew, J. Porras, M. Tacon, B. Keimer, S. Wiedmann, C. Proust, and D. LeBoeuf, NPJ Quant. Mater. 3, 11 (2018). open in new tab
  7. O. Cyr-Choinière, R. Daou, F. Laliberté, C. Collignon, S. Badoux, D. LeBoeuf, J. Chang, B. J. Ramshaw, D. A. Bonn, W. N. Hardy, R. Liang, J.-Q. Yan, J.-G. Cheng, J.-S. Zhou, J. B. Goodenough, S. Pyon, T. Takayama, H. Takagi, N. Doiron-Leyraud, and L. Taillefer, Phys. Rev. B 97, 064502 (2018). open in new tab
  8. V. L. R. Jacques, C. Laulhé, N. Moisan, S. Ravy, and D. Le Bolloc'h, Phys. Rev. Lett. 117, 156401 (2016). open in new tab
  9. J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Phys. 8, 871 (2012). open in new tab
  10. J. Chang, E. Blackburn, O. Ivashko, A. T. Holmes, N. B. Christensen, M. Hücker, R. Liang, D. A. Bonn, W. N. Hardy, U. Rütt, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Commun. 7, 11494 (2016). open in new tab
  11. D. Graf, E. S. Choi, J. S. Brooks, M. Matos, R. T. Henriques, and M. Almeida, Phys. Rev. Lett. 93, 076406 (2004). open in new tab
  12. T. Gruner, D. Jang, Z. Huesges, R. Cardoso-Gil, G. H. Fecher, M. M. Koza, O. Stockert, A. P. Mackenzie, M. Brando, and C. Geibel, Nat. Phys. 13, 967 (2017). open in new tab
  13. K. Cho, M. Konczykowski, S. Teknowijoyo, M. A. Tanatar, J. Guss, P. B. Gartin, J. M. Wilde, A. Kreyssig, R. J. McQueeney, A. I. Goldman, V. Mishra, P. J. Hirschfeld, and R. Prozorov, Nat. Commun. 9, 2796 (2018). open in new tab
  14. W. Schäfer, W. Kockelmann, G. Will, J. Yakinthos, and P. Kotsanidis, J. Alloys Compd. 250, 565 (1997). open in new tab
  15. H. Onodera, M. Ohashi, H. Amanai, S. Matsuo, H. Yamauchi, Y. Yamaguchi, S. Funahashi, and Y. Morii, J. Magn. Magn. Mater. 149, 287 (1995). open in new tab
  16. H. Onodera, Y. Koshikawa, M. Kosaka, M. Ohashi, H. Yamauchi, and Y. Yamaguchi, J. Magn. Magn. Mater. 182, 161 (1998). open in new tab
  17. N. Hanasaki, K. Mikami, S. Torigoe, Y. Nogami, S. Shimomura, M. Kosaka, and H. Onodera, J. Phys.: Conf. Ser. 320, 012072 (2011). open in new tab
  18. M. Roman, J. Strychalska-Nowak, T. Klimczuk, and K. K. Kolincio, Phys. Rev. B 97, 041103(R) (2018). open in new tab
  19. S. Steiner, H. Michor, O. Sologub, B. Hinterleitner, F. Höfenstock, M. Waas, E. Bauer, B. Stöger, V. Babizhetskyy, V. Levytskyy, and B. Kotur, Phys. Rev. B 97, 205115 (2018). open in new tab
  20. B. Wiendlocha, R. Szczęśniak, A. P. Durajski, and M. Muras, Phys. Rev. B 94, 134517 (2016). open in new tab
  21. W. H. Lee, H. K. Zeng, Y. D. Yao, and Y. Y. Chen, Physica C 266, 138 (1996). open in new tab
  22. V. K. Pecharsky, L. L. Miller, and K. A. Gschneidner, Phys. Rev. B 58, 497 (1998). open in new tab
  23. J. Quintanilla, A. D. Hillier, J. F. Annett, and R. Cywinski, Phys. Rev. B 82, 174511 (2010). open in new tab
  24. J. F. Landaeta, D. Subero, P. Machado, F. Honda, and I. Bonalde, Phys. Rev. B 96, 174515 (2017). open in new tab
  25. M. Murase, A. Tobo, H. Onodera, Y. Hirano, T. Hosaka, S. Shimomura, and N. Wakabayashi, J. Phys. Soc. Jpn. 73, 2790 (2004). open in new tab
  26. D. Ahmad, B. H. Min, G. I. Min, S.-I. Kimura, J. Seo, and Y. S. Kwon, Phys. Status Solidi B 252, 2662 (2015). open in new tab
  27. H. Michor, S. Steiner, A. Schumer, M. Hembara, V. Levytskyy, V. Babizhetskyy, and B. Kotur, J. Magn. Magn. Mater. 441, 69 (2017). open in new tab
  28. J. Laverock, T. D. Haynes, C. Utfeld, and S. B. Dugdale, Phys. Rev. B 80, 125111 (2009). open in new tab
  29. S. Shimomura, C. Hayashi, N. Hanasaki, K. Ohnuma, Y. Kobayashi, H. Nakao, M. Mizumaki, and H. Onodera, Phys. Rev. B 93, 165108 (2016). open in new tab
  30. I. Hase and T. Yanagisawa, J. Phys. Soc. Jpn. 78, 084724 (2009). open in new tab
  31. S. Shimomura, C. Hayashi, G. Asaka, N. Wakabayashi, M. Mizumaki, and H. Onodera, Phys. Rev. Lett. 102, 076404 (2009). open in new tab
  32. N. Hanasaki, Y. Nogami, M. Kakinuma, S. Shimomura, M. Kosaka, and H. Onodera, Phys. Rev. B 85, 092402 (2012). open in new tab
  33. J. H. Kim, J.-S. Rhyee, and Y. S. Kwon, Phys. Rev. B 86, 235101 (2012). open in new tab
  34. N. Yamamoto, R. Kondo, H. Maeda, and Y. Nogami, J. Phys. Soc. Jpn. 82, 123701 (2013). open in new tab
  35. K. K. Kolincio, K. Górnicka, M. J. Winiarski, J. Strychalska- Nowak, and T. Klimczuk, Phys. Rev. B 94, 195149 (2016). open in new tab
  36. N. Hanasaki, S. Shimomura, K. Mikami, Y. Nogami, H. Nakao, and H. Onodera, Phys. Rev. B 95, 085103 (2017). open in new tab
  37. K. K. Kolincio, M. Roman, M. J. Winiarski, J. Strychalska- Nowak, and T. Klimczuk, Phys. Rev. B 95, 235156 (2017). open in new tab
  38. M. Roman, T. Klimczuk, and K. K. Kolincio, Phys. Rev. B 98, 035136 (2018). open in new tab
  39. M. Roman (unpublished).
  40. J. Rodríguez-Carvajal, Physica B 192, 55 (1993). open in new tab
  41. J. Bunting, T. Ashworth, and H. Steeple, Cryogenics 9, 385 (1969). open in new tab
  42. M. M. Kreitman, The glass temperature and the specific heat of apiezon n and t greases, in Advances in Cryogenic Engineering: Proceeding of the 1970 Cryogenic Engineering Conference, edited by K. D. Timmerhaus (Springer US, Boston, MA, 1971), pp. 51-53. open in new tab
  43. W. Jeitschko and M. H. Gerss, J. Less-Common Met. 116, 147 (1986). open in new tab
  44. W. L. McMillan, Phys. Rev. B 16, 643 (1977). open in new tab
  45. W. L. McMillan, Phys. Rev. B 12, 1187 (1975). open in new tab
  46. T. Gulden, R. W. Henn, O. Jepsen, R. K. Kremer, W. Schnelle, A. Simon, and C. Felser, Phys. Rev. B 56, 9021 (1997). open in new tab
  47. M. M. Parish and P. B. Littlewood, Nature 426, 162 (2003). open in new tab
  48. M. M. Parish and P. B. Littlewood, Phys. Rev. B 72, 094417 (2005). open in new tab
  49. A. A. Abrikosov, J. Exp. Theor. Phys. 29, 746 (1969).
  50. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998). open in new tab
  51. A. A. Abrikosov, Europhys. Lett. 49, 789 (2000). open in new tab
  52. A. A. Sinchenko, P. D. Grigoriev, P. Lejay, and P. Monceau, Phys. Rev. B 96, 245129 (2017). open in new tab
  53. A. V. Frolov, A. P. Orlov, P. D. Grigoriev, V. N. Zverev, A. A. Sinchenko, and P. Monceau, JETP Lett. 107, 488 (2018). open in new tab
  54. Y. Feng, Y. Wang, D. M. Silevitch, J.-Q. Yan, R. Kobayashi, M. Hedo, T. Nakama, Y.Ōnuki, A. V. Suslov, B. Mihaila, P. B. Littlewood, and T. F. Rosenbaum, Proc. Natl. Acad. Sci. USA (2019), doi: 10.1073/pnas.1820092116. open in new tab
  55. I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Sov. Phys. JETP 4, 41 (1957) [J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 63 (1956)].
  56. H. Lei, K. Wang, and C. Petrovic, J. Phys.: Condens. Matter 29, 075602 (2017). open in new tab
  57. A. Pippard, Magnetoresistance in Metals, Cambridge Studies in Low Temperature Physics (Cambridge University Press, Cambridge, 2009). open in new tab
  58. R. H. McKenzie, J. S. Qualls, S. Y. Han, and J. S. Brooks, Phys. Rev. B 57, 11854 (1998). open in new tab
  59. S. Yasuzuka, K. Yamaya, Y. Okajima, S. Tanda, N. Takeshita, H. Mitamura, T. Nakanishi, and N. Môri, J. Phys. Soc. Jpn. 74, 1787 (2005). open in new tab
  60. K. Kolincio, O. Pérez, S. Hébert, P. Fertey, and A. Pautrat, Phys. Rev. B 93, 235126 (2016). open in new tab
  61. K. Akiba, A. Miyake, Y. Akahama, K. Matsubayashi, Y. Uwatoko, and M. Tokunaga, Phys. Rev. B 95, 115126 (2017). open in new tab
  62. C.-Z. Li, J.-G. Li, L.-X. Wang, L. Zhang, J.-M. Zhang, D. Yu, and Z.-M. Liao, ACS Nano 10, 6020 (2016). open in new tab
  63. X. Liu, Z. Zhang, C. Cai, S. Tian, S. Kushwaha, H. Lu, T. Taniguchi, K. Watanabe, R. J. Cava, S. Jia, and J.-H. Chen, 2D Materials 4, 021018 (2017). open in new tab
  64. Y. Luo, H. Li, Y. M. Dai, H. Miao, Y. G. Shi, H. Ding, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, and J. D. Thompson, Appl. Phys. Lett. 107, 182411 (2015). open in new tab
  65. J.-F. Wang, M. Yang, L. Li, M. Sasaki, A. Ohnishi, M. Kitaura, K.-S. Kim, and H.-J. Kim, Phys. Rev. B 89, 035137 (2014). open in new tab
  66. C. M. Hurd, The Hall Effect in Metals and Alloys, edited by K. Mendelssohn and K. D. Timmerhaus (Springer, Berlin, 1972). open in new tab
  67. H. Rotella, O. Copie, A. Pautrat, P. Boullay, A. David, D. Pelloquin, C. Labbé, C. Frilay, and W. Prellier, J. Phys.: Condens. Matter 27, 095603 (2015). open in new tab
  68. Y. Sun, T. Taen, T. Yamada, S. Pyon, T. Nishizaki, Z. Shi, and T. Tamegai, Phys. Rev. B 89, 144512 (2014). open in new tab
  69. H. Lin, Y. Li, Q. Deng, J. Xing, J. Liu, X. Zhu, H. Yang, and H.-H. Wen, Phys. Rev. B 93, 144505 (2016). open in new tab
  70. T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nat. Mater. 14, 280 (2014). open in new tab
  71. H. Takahashi, R. Okazaki, Y. Yasui, and I. Terasaki, Phys. Rev. B 84, 205215 (2011). open in new tab
  72. S. Ishiwata, Y. Shiomi, J. S. Lee, M. S. Bahramy, T. Suzuki, M. Uchida, R. Arita, Y. Taguchi, and Y. Tokura, Nat. Mater. 12, 512 (2013). open in new tab
  73. A. Rötger, J. Lehmann, C. Schlenker, J. Dumas, J. Marcus, Z. S. Teweldemedhin, and M. Greenblatt, Europhys. Lett. 25, 23 (1994). open in new tab
  74. C. Hess, C. Schlenker, J. Dumas, M. Greenblatt, and Z. S. Teweldemedhin, Phys. Rev. B 54, 4581 (1996). open in new tab
  75. S. Yasuzuka, Y. Okajima, S. Tanda, K. Yamaya, N. Takeshita, and N. Môri, Phys. Rev. B 60, 4406 (1999). open in new tab
  76. H. Chen, Z. Li, L. Guo, and X. Chen, Europhys. Lett. 117, 27009 (2017). open in new tab
  77. J.-S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Nature 459, 965 (2009). open in new tab
  78. J.-S. Rhyee and J. H. Kim, Materials (Basel) 8, 1283 (2015). open in new tab
  79. R. Bel, K. Behnia, and H. Berger, Phys. Rev. Lett. 91, 066602 (2003). open in new tab
  80. K. K. Kolincio, R. Daou, O. Pérez, L. Guérin, P. Fertey, and A. Pautrat, Phys. Rev. B 94, 241118(R) (2016). open in new tab
  81. Y. Long, C. Z. Zheng, J. L. Luo, Z. J. Cheng, and Y. S. He, J. Appl. Phys. 89, 3523 (2001). open in new tab
  82. G. Prathiba, I. Kim, S. Shin, J. Strychalska, T. Klimczuk, and T. Park, Sci. Rep. 6, 26530 (2016). open in new tab
  83. S. Tomić, K. Biljaković, D. Djurek, J. Cooper, P. Monceau, and A. Meerschaut, Solid State Commun. 38, 109 (1981). open in new tab
  84. C. Escribe-filippini, K. Konaté, J. Marcus, C. Schlenker, R. Almairac, R. Ayroles, and C. Roucau, Philos. Mag. B 50, 321 (1984). open in new tab
  85. M. Chung, Y.-K. Kuo, G. Mozurkewich, E. Figueroa, Z. Teweldemedhin, D. A. Di Carlo, M. Greenblatt, and J. W. Brill, J. Phys. IV France 03, C2-247 (1993). open in new tab
  86. R. A. Craven and S. F. Meyer, Phys. Rev. B 16, 4583 (1977). open in new tab
  87. Y. K. Kuo, Y. Y. Chen, L. M. Wang, and H. D. Yang, Phys. Rev. B 69, 235114 (2004). open in new tab
  88. J. Wang, R. Xiong, C. Li, D. Yin, Z. Tang, Q. Wang, J. Shi, X. Qin, and H. Chen, Solid State Commun. 139, 323 (2006). open in new tab
  89. Y.-K. Kuo, C. S. Lue, F. H. Hsu, H. H. Li, and H. D. Yang, Phys. Rev. B 64, 125124 (2001). open in new tab
  90. R. S. Kwok, G. Gruner, and S. E. Brown, Phys. Rev. Lett. 65, 365 (1990). open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 146 times

Recommended for you

Meta Tags