Chemical Structure and Thermal Properties versus Accelerated Aging of Bio-Based Poly(ether-urethanes) with Modified Hard Segments - Publication - Bridge of Knowledge

Search

Chemical Structure and Thermal Properties versus Accelerated Aging of Bio-Based Poly(ether-urethanes) with Modified Hard Segments

Abstract

Aging of polymers is a natural process that occurs during their usage and storage. Predicting the lifetime of polymers is a crucial aspect that should be considered at the design stage. In this paper, a series of bio-based thermoplastic poly(ether-urethane) elastomers (bio-TPUs) with modified hard segments were synthesized and investigated to understand the structural and property changes triggered by accelerated aging. The bio-TPUs were synthesized at an equimolar ratio of reagents using the prepolymer method with the use of bio-based poly(trimethylene ether) glycol, bio-based 1,3-propanediol, and hexamethylene diisocyanate or hexamethylene diisocyanate/partially bio-based diisocyanate mixtures. The polymerization reaction was catalyzed by dibutyltin dilaurate (DBTDL). The structural and property changes after accelerated aging under thermal and hydrothermal conditions were determined using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA). Among other findings, it was observed that both the reference and aged bio-TPUs decomposed in two main stages and exhibited thermal stability up to approximately 300 °C. Based on the research conducted, it was found that accelerated aging impacts the supramolecular structure of TPUs.

Citations

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MOLECULES no. 29,
ISSN: 1420-3049
Language:
English
Publication year:
2024
Bibliographic description:
Godlewska J., Smorawska J., Głowińska E.: Chemical Structure and Thermal Properties versus Accelerated Aging of Bio-Based Poly(ether-urethanes) with Modified Hard Segments// MOLECULES -,iss. 29(15) (2024), s.3585-
DOI:
Digital Object Identifier (open in new tab) 10.3390/molecules29153585
Sources of funding:
  • IDUB
Verified by:
Gdańsk University of Technology

seen 2 times

Recommended for you

Meta Tags