Composites in energy storing prosthetic feet - Publication - Bridge of Knowledge

Search

Composites in energy storing prosthetic feet

Abstract

Composites reinforced with carbon and glass fibers have become the commonly used material in the production of energy storing prosthetic feet (ESPF/elastic feet prostheses). Their properties ensure a stable and light structure that allows for accumulation, storage and release of energy during walking, thus ensuring an increase in gait efficiency. Depending on the modification of the composite in terms of fiber selection, their form, type of combination and mass content, and the design of the prosthesis, the foot obtains different efficiency as the ratio of energy released to energy accumulated. The article characterizes ESPF’s in terms of mechanical and functional properties, compared properties of fibers and resins indicating the material that meets best the requirements towards elastic feet prostheses. Possible modifications of composite materials that influence the material properties and the work of the foot are also presented as well as an overview of selected ESPF prosthetic feet available on the market.

Cite as

Full text

download paper
downloaded 570 times
Publication version
Accepted or Published Version
License
Copyright (2018 by ISASDMT)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
European Journal of Medical Technologies no. 3, edition 20, pages 16 - 22,
ISSN: 2353-1029
Language:
English
Publication year:
2018
Bibliographic description:
Dziaduszewska M., Wekwejt M.: Composites in energy storing prosthetic feet// European Journal of Medical Technologies. -Vol. 3., iss. 20 (2018), s.16-22
Bibliography: test
  1. Nolan L. Carbon fibre prostheses and running in amputees: A review. Foot and Ankle Surgery 2008, 14 (3): 125-129 open in new tab
  2. Królikowski W. Tworzywa wzmocnione i włókna wzmacniające. Politechnika Szczecińska, Szczecin 1984.
  3. Hafner B, Sanders J, Czerniecki J, Fergason J.. open in new tab
  4. Trans-tibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature. J Rehabil Res Dev 2002, 39(1): 1-11. open in new tab
  5. S. Asgeirsson, G. Olafsson, G. Ingimarsson: Prostetic Foot, US7503937B2US Grant (2006), https://patents.google.com/patent/US7503937B2/en.
  6. Wing DC, Hittenberger DA. Energy-storing prosthetic feet. Arch Phys Med Rehabil 1989, 70 (4): 330-5.
  7. Winter D. Energy generation and absorption at the ankle and knee during fast, natural and slow cadences. Clin orthop Relat Res, 1983, 175: 147-154. open in new tab
  8. Postema K, Hermens H, De Vries J, Koopman, H, Eisma W. Energy storage and release of prosthetic feet. part 2: Subjective ratings of 2 energy storing and 2 conventional feet, user choice of foot and deciding factor. Prosthetics and Orthotics International, 1997, 21(1): 28-34 open in new tab
  9. Saechtling H, Żebrowski W. Tworzywa sztuczne -poradnik. Wydawnictwa Naukowo- Techniczne, wydanie 4 zmienione i rozszerzone, Warszawa 1978.
  10. Imielińska K. Materiały pomocnicze do ćwiczeń laboratoryjnych. Materiałoznastwo III. Materiały kompozytowe.
  11. Mayer P, Kaczmar J. Właściwości i zastosowanie włókien węglowych i szklanych. Tworzywa sztuczne i Chemia 2008, 6: 52-56.
  12. Walke K, Pandure P. Mechanical Properties of Materials Used For Prosthetic Foot: A Review. Journal of Mechanical and Civil Engineering. 6 th National Conference RDME, India, 2017, 61-65. open in new tab
  13. Czerniecki J, Gitter A, Munro C. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet. Biomech, 1991, 24(1): 63-75. open in new tab
  14. Królicka A, Trębicki K. Próby wytrzymałościowe kompozytów polimerowych.
  15. Bezpieczeństwo i Ekologia. Autobusy. 2017, 9.
  16. Geil M. Energy storage and return in dynamic elastic response prosthetic feet Pediatric gait. A new millennium in clinical care and motion analysis technology, IEEE, Chicago, IL 2000, 134-142. open in new tab
  17. Fejdyś M, Łandwijt M. Włókna techniczne wzmacniające materiały kompozytowe. Techniczne wyroby włókiennicze 2010.
  18. Alaranta H, Kinnunen A, Karkkainen M, Pohjolainen T, Heliovaara M. Practical benefits of flex-foot in below-knee amputees. Journal of Prosthetics and Orthotics, 1991, 3(4): 179- 181. open in new tab
  19. Astriab M. Praca dyplomowa inżynierska, Modelowanie i analiza właściwości mechanicznych protez stóp. Politechnika Poznańska, Wydział Budowy Maszyn i Zarządzania, Instytut Mechaniki Stosowanej, Poznań 2018.
  20. Imielińska K. Materiały pomocnicze do ćwiczeń laboratoryjnych. Materiałoznastwo III. Materiały kompozytowe. Politechnika Gdańska, Wydział Mechaniczny.
  21. PN-EN ISO 12215-5:2008 -Małe statki -Konstrukcja i wymiarowanie kadłuba -Część 5. open in new tab
  22. Gailey R, Roach K, Applegate E, Cunniffe B, Licht, (ed). The Amputee Mobility Predictor: An instrument to assess determinants of the lower-limb amputee's ability to ambulate, University of Miami School of Medicine, Miami, FL, 2002, 83(5): 613-627. open in new tab
Verified by:
Gdańsk University of Technology

seen 320 times

Recommended for you

Meta Tags