Constructing genuinely entangled multipartite states with applications to local hidden variables and local hidden states models - Publication - Bridge of Knowledge

Search

Constructing genuinely entangled multipartite states with applications to local hidden variables and local hidden states models

Abstract

Building upon the results of R. Augusiak et al. [Phys. Rev. Lett. 115, 030404 (2015)] we develop a general approach to the generation of genuinely entangled multipartite states of any number of parties from genuinely entangled states of a fixed number of parties, in particular, the bipartite entangled ones. In our approach, certain isometries whose output subspaces are either symmetric or genuinely entangled in some multipartite Hilbert spaces are applied to local subsystems of bipartite entangled or multipartite genuinely entangled quantum states. To prove that entanglement of the resulting states is indeed genuine we then introduce criteria allowing us to decide it efficiently. The construction is then exploited to provide examples of multipartite states that are genuinely entangled but not genuinely nonlocal, giving further illustration for the inequivalence between entanglement and nonlocality in the multiparticle scenario. It is also shown how to construct genuinely entangled states which are unsteerable across certain bipartite cuts

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 2

    Scopus

Authors (3)

Cite as

Full text

download paper
downloaded 22 times
Publication version
Accepted or Published Version
License
Copyright (2018 American Physical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PHYSICAL REVIEW A no. 98, edition 1, pages 1 - 13,
ISSN: 2469-9926
Language:
English
Publication year:
2018
Bibliographic description:
Augusiak R., Demianowicz M., Tura J.: Constructing genuinely entangled multipartite states with applications to local hidden variables and local hidden states models// PHYSICAL REVIEW A. -Vol. 98, iss. 1 (2018), s.1-13
DOI:
Digital Object Identifier (open in new tab) 10.1103/physreva.98.012321
Bibliography: test
  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett. 70, 1895 (1993). open in new tab
  2. A. K. Ekert, Quantum Cryptography Based on Bell's Theorem, Phys. Rev. Lett. 67, 661 (1991). open in new tab
  3. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014). open in new tab
  4. G. Tóth and O. Gühne, Entanglement detection, Phys. Rep. 474, 1 (2009). open in new tab
  5. B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth, and C. Klempt, Detecting Multiparticle Entanglement of Dicke States, Phys. Rev. Lett. 112, 155304 (2014). open in new tab
  6. R. Schmied et al., Bell correlations in a Bose-Einstein conden- sate, Science 352, 441 (2016). open in new tab
  7. W. Dür and J. I. Cirac, Classification of multiqubit mixed states: Separability and distillability properties, Phys. Rev. A 61, 042314 (2000). open in new tab
  8. A. Acín, D. Bruss, M. Lewenstein, and A. Sanpera, Classification of Mixed Three-Qubit States, Phys. Rev. Lett. 87, 040401 (2001). open in new tab
  9. O. Gühne, G. Tóth and H. J. Briegel, Multipartite entanglement in spin chains, New J. Phys. 7, 229 (2005). open in new tab
  10. G. Tóth, Multipartite entanglement and high-precision metrol- ogy, Phys. Rev. A 85, 022322 (2012). open in new tab
  11. P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Fisher information and multiparticle entanglement, Phys. Rev. A 85, 022321 (2012). open in new tab
  12. R. Augusiak, J. Kołodyński, A. Streltsov, M. N. Bera, A. Acín, and M. Lewenstein, Asymptotic role of entanglement in quantum metrology, Phys. Rev. A 94, 012339 (2016). open in new tab
  13. R. Augusiak, M. Demianowicz, J. Tura, and A. Acín, Entan- glement and Nonlocality are Inequivalent for Any Number of Parties, Phys. Rev. Lett. 115, 030404 (2015). open in new tab
  14. R. Gallego, L. E. Würflinger, A. Acín, and M. Navascués, Operational Framework for Nonlocality, Phys. Rev. Lett. 109, 070401 (2012). open in new tab
  15. J.-D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Defini- tions of multipartite nonlocality, Phys. Rev. A 88, 014102 (2013). open in new tab
  16. F. Hirsch, M. T. Quintino, J. Bowles, and N. Brunner, Genuine Hidden Quantum Nonlocality, Phys. Rev. Lett. 111, 160402 (2013). open in new tab
  17. T. Cubitt, A. Montanaro, and A. Winter, On the dimension of subspaces with bounded Schmidt rank, J. Math. Phys. 49, 022107 (2008). open in new tab
  18. M. Demianowicz and R. Augusiak, From unextendible product bases to genuinely entangled subspaces, Phys. Rev. A 98, 012313 (2018). open in new tab
  19. K. R. Parthasarathy, On the maximal dimension of a completely entangled subspace for finite level quantum systems, Proc. Indian Acad. Sci. (Math. Sci.) 114, 365 (2004). open in new tab
  20. B. V. Rajarama Bhat, A completely entangled subspace of maximal dimension, Int. J. Quantum Inf. 04, 325 (2006). open in new tab
  21. J. Walgate and A. J. Scott, Generic local distinguishability and completely entangled subspaces, J. Phys. A: Math. Theor. 41, 375305 (2008). open in new tab
  22. K. Eckert, J. Schliemann, D. Bruss, and M. Lewenstein, Quan- tum correlations in systems of indistinguishable particles, Ann. Phys. 299, 88 (2002). open in new tab
  23. R. Augusiak, J. Tura, J. Samsonowicz, and M. Lewenstein, Entangled symmetric states of N qubits with all positive partial transpositions, Phys. Rev. A 86, 042316 (2012). open in new tab
  24. M. M. Wolf, Quantum Channels and Operations: Guided Tour, https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/ MichaelWolf/QChannelLecture.pdf. open in new tab
  25. M. Horodecki and P. Horodecki, Reduction criterion of separa- bility and limits for a class of distillation protocols, Phys. Rev. A 59, 4206 (1999). open in new tab
  26. G. Vidal and R. Tarrach, Robustness of entanglement, Phys. Rev. A 59, 141 (1999). open in new tab
  27. G. Tóth and A. Acín, Genuine tripartite entangled states with a local hidden-variable model, Phys. Rev. A 74, 030306(R) (2006). open in new tab
  28. D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, and A. Winter, Quantum Correlation without Classical Correlations, Phys. Rev. Lett. 101, 070502 (2008). open in new tab
  29. O. Gühne and M. Seevinck, Separability criteria for gen- uine multiparticle entanglement, New J. Phys. 12, 053002 (2010). open in new tab
  30. G. Svetlichny, Distinguishing three-body from two-body non- separability by a Bell-type inequality, Phys. Rev. D 35, 3066 (1987). open in new tab
  31. J. Barrett, Nonsequential positive-operator-valued measure- ments on entangled mixed states do not always violate a Bell inequality, Phys. Rev. A 65, 042302 (2002). open in new tab
  32. M. L. Almeida, S. Pironio, J. Barrett, G. Tóth, and A. Acín, Noise Robustness of the Nonlocality of Entangled Quantum States, Phys. Rev. Lett. 99, 040403 (2007). open in new tab
  33. R. Horodecki, P. Horodecki, and M. Horodecki, Violating Bell inequality by mixed states: Necessary and sufficient condition, Phys. Lett. A 200, 340 (1995). open in new tab
  34. R. Augusiak, M. Demianowicz, and A. Acín, Local hidden- variable models for entangled quantum states, J. Phys A: Math. Theor. 47, 424002 (2014). open in new tab
  35. M. T. Quintino (private communication). open in new tab
  36. A. Acín, R. Augusiak, D. Cavalcanti, C. Hadley, J. K. Korbicz, M. Lewenstein, L. Masanes, and M. Piani, Unified Framework for Correlations in Terms of Local Quantum Observables, Phys. Rev. Lett. 104, 140404 (2010). open in new tab
  37. R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989). open in new tab
  38. P. Skrzypczyk et al., Detection of entanglement in asymmetric quantum networks and multipartite quantum steering, Nat. Commun. 6, 7941 (2015). open in new tab
  39. M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín, and N. Brunner, Inequivalence of en- tanglement, steering, and Bell nonlocality for general measure- ments, Phys. Rev. A 92, 032107 (2015). open in new tab
  40. M. Horodecki, P. Horodecki, and R. Horodecki, Separability of n-particle mixed states: Necessary and sufficient conditions in terms of linear maps, Phys. Lett. A 283, 1 (2001). open in new tab
  41. A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, Three-Particle Entanglements from Two Entangled Pairs, Phys. Rev. Lett. 78, 3031 (1997). open in new tab
  42. D. E. Browne and T. Rudolph, Resource-Efficient Linear Optical Quantum Computation, Phys. Rev. Lett. 95, 010501 (2005). open in new tab
  43. Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, An optical fusion gate for W-states, New J. Phys. 13, 103003 (2011). open in new tab
  44. F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, Fusing multiple W states simultaneously with a Fredkin gate, Phys. Rev. A 89, 042311 (2014). open in new tab
  45. C. Yesilyurt, S. Bugu, F. Ozaydin, A. A. Altintas, M. Tame, L. Yang, and Ş. K. Özdemir, Deterministic local doubling of W states, J. Opt. Soc. Am. B 33, 2313 (2016). open in new tab
Verified by:
Gdańsk University of Technology

seen 153 times

Recommended for you

Meta Tags