Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties - Publication - Bridge of Knowledge

Search

Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties

Abstract

Aminotransferases catalyze reversibly the transamination reaction by a ping-pong bi-bi mechanism with pyridoxal 5′-phosphate (PLP) as a cofactor. Various aminotransferases acting on a range of substrates have been reported. Aromatic transaminases are able to catalyze the transamination reaction with both aromatic and acidic substrates. Two aminotransferases from C. albicans, Aro8p and Aro9p, have been identified recently, exhibiting different catalytic properties. To elucidate the multiple substrate recognition of the two enzymes we determined the crystal structures of an unliganded CaAro8p, a complex of CaAro8p with the PLP cofactor bound to a substrate, forming an external aldimine, CaAro9p with PLP in the form of internal aldimine, and CaAro9p with a mixture of ligands that have been interpreted as results of the enzymatic reaction. The crystal structures of both enzymes contains in the asymmetric unit a biologically relevant dimer of 55 kDa for CaAro8 and 59 kDa for CaAro9p protein subunits. The ability of the enzymes to process multiple substrates could be related to a feature of their architecture in which the active site resides on one subunit while the substrate-binding site is formed by a long loop extending from the other subunit of the dimeric molecule. The separation of the two functions to different chemical entities could facilitate the evolution of the substrate-binding part and allow it to be flexible without destabilizing the conservative catalytic mechanism.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 31 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF STRUCTURAL BIOLOGY no. 205, edition 3, pages 26 - 33,
ISSN: 1047-8477
Language:
English
Publication year:
2019
Bibliographic description:
Kiliszek A., Rypniewski W., Rząd K., Milewski S., Gabriel I.: Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties// JOURNAL OF STRUCTURAL BIOLOGY. -Vol. 205, iss. 3 (2019), s.26-33
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jsb.2019.02.001
Bibliography: test
  1. Brunke, S., Seider, K., Richter, M.E., Bremer-Streck, S., Ramachandra, S., Kiehntopf, M., Brock, M., Hube, B., 2014. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Eukaryot. Cell 13, 758-765. open in new tab
  2. Bulfer, S.L., Brunzelle, J.S., Trievel, R.C., 2013. Crystal structure of Saccharomyces cer- evisiae Aro8, a putative alpha-aminoadipate aminotransferase. Protein Sci.. 22, 1417-1424. open in new tab
  3. Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501. open in new tab
  4. Han, Q., Cai, T., Tagle, D.A., Robinson, H., Li, J.Y., 2008. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II. open in new tab
  5. A. Kiliszek, et al. Journal of Structural Biology 205 (2019) 26-33 open in new tab
  6. Biosci. Rep. 28, 205-215. open in new tab
  7. Iraqui, I., Vissers, S., Cartiaux, M., Urrestarazu, A., 1998. Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic amino- transferases I and II reveals a new aminotransferase subfamily. Mol. Gen. Genet. 257, 238-248. open in new tab
  8. Kabsch, W., 2010. Xds. Acta Crystallogr. D-Biol. Crystallogr. 66, 125-132. open in new tab
  9. Karsten, W.E., Reyes, Z.L., Bobyk, K.D., Cook, P.F., Chooback, L., 2011. Mechanism of the aromatic aminotransferase encoded by the Aro8 gene from Saccharomyces cerevisiea. Arch. Biochem. Biophys. 516, 67-74. open in new tab
  10. Kradolfer, P., Niederberger, P., Hutter, R., 1982. Tryptophan degradation in sacchar- omyces-cerevisiae -characterization of 2 aromatic aminotransferases. Arch. Microbiol. 133, 242-248. open in new tab
  11. Langer, G., Cohen, S.X., Lamzin, V.S., Perrakis, A., 2008. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171-1179. open in new tab
  12. Mccoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674. open in new tab
  13. Mueller, U., Forster, R., Hellmig, M., Huschmann, F.U., Kastner, A., Malecki, P., Puhringer, S., Rower, M., Sparta, K., Steffien, M., Uhlein, M., Wilk, P., Weiss, M.S., 2015. The macromolecular crystallography beamlines at BESSY II of the Helmholtz- Zentrum Berlin: Current status and perspectives. Eur. Phys. J. Plus 130. open in new tab
  14. Murshudov, G.N., Vagin, A.A., Dodson, E.J., 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D-Biol. Crystallogr. 53, 240-255. open in new tab
  15. Paiardini, A., Bossa, F., Pascarella, S., 2004. Evolutionarily conserved regions and hy- drophobic contacts at the superfamily level: the case of the fold-type I, pyridoxal-5 '-phosphate-dependent enzymes. Protein Sci. 13, 2992-3005. open in new tab
  16. Rzad, K., Gabriel, I., 2015. Characterization of two aminotransferases from Candida al- bicans. Acta Biochim. Pol. 62, 903-912.
  17. Rzad, K., Milewski, S., Gabriel, I., 2018. Versatility of putative aromatic amino- transferases from Candida albicans. Fungal Genet. Biol. 110, 26-37.
  18. Tomita, T., Miyagawa, T., Miyazaki, T., Fushinobu, S., Kuzuyama, T., Nishiyama, M., 2009. Mechanism for multiple-substrates recognition of alpha-aminoadipate amino- transferase from Thermus thermophilus. Proteins 75, 348-359. open in new tab
  19. Urrestarazu, A., Vissers, S., Iraqui, I., Grenson, M., 1998. Phenylalanine-and tyrosine- auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol. Gen. Genet. 257, 230-237. open in new tab
  20. Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., McNicholas, S.J., Murshudov, G.N., Pannu, N.S., Potterton, E.A., Powell, H.R., Read, R.J., Vagin, A., Wilson, K.S., 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D-Biol. Crystallogr. 67, 235-242. open in new tab
  21. A. Kiliszek, et al. Journal of Structural Biology 205 (2019) 26-33 open in new tab
Verified by:
Gdańsk University of Technology

seen 160 times

Recommended for you

Meta Tags