Crystal structures of eight- and ten-membered cyclic bisanisylphosphonothioyl disulfanes and comparison with their P-ferrocenyl analogues - Publication - Bridge of Knowledge

Search

Crystal structures of eight- and ten-membered cyclic bisanisylphosphonothioyl disulfanes and comparison with their P-ferrocenyl analogues

Abstract

Two new crystal structures of eight- and ten-membered cyclic bisanisylphosphonothioyl disulfanes, namely 2,5-bis(4-methoxyphenyl)-1,6,3,4,25,55- dioxadithiadiphosphocane-2,5-dithione, C16H18O4P2S4, and 2,5-bis(4-methoxyphenyl)-1,6,3,4,25,55-dioxadithiadiphosphecane-2,5-dithione, C18H22O4P2S4, have been determined and compared to structures of the ferrocenyl analogues. The eight-membered rings have similar conformations (TBC) but the tenmembered macrocycles are differently puckered. Structural parameters of the relevant SPSSPS motif have been analysed and are discussed in detail. Compound 1 was refined as an inversion twin and 2 was refined as a two component rotational twin.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 15 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
publikacja w in. zagranicznym czasopiśmie naukowym (tylko język obcy)
Published in:
Acta Crystallographica Section E CRYSTALLOGRAPHIC COMMUNICATIONS no. 74, pages 212 - 216,
ISSN: 2056-9890
Language:
English
Publication year:
2018
Bibliographic description:
Przychodzeń W., Chojnacki J.. Crystal structures of eight- and ten-membered cyclic bisanisylphosphonothioyl disulfanes and comparison with their P-ferrocenyl analogues. Acta Crystallographica Section E CRYSTALLOGRAPHIC COMMUNICATIONS, 2018, Vol. 74, , s.212-216
DOI:
Digital Object Identifier (open in new tab) 10.1107/s2056989018001068
Bibliography: test
  1. Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. open in new tab
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897. open in new tab
  3. Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590. open in new tab
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854. open in new tab
  5. Foreman, M. R. St J., Slawin, A. M. Z. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3653-3657. open in new tab
  6. Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004). New J. Chem. 28, 1383-1389. open in new tab
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179. open in new tab
  8. Hua, G., Davidson, K., Cordes, D. B., Du, J., Slavin, A. M. Z. & Woollins, J. D. (2017). Molecules, 22, 1687-1700. open in new tab
  9. Jesberger, M., Davis, T. P. & Barner, L. (2003). Synthesis, pp. 1929- 1958. open in new tab
  10. Knopik, P., Łuczak, L., Potrzebowski, M. J., Michalski, J., Błaszczyk, J. & Wieczorek, M. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2749- 2757. open in new tab
  11. Łopusiń ski, A., Łuczak, L., Michalski, J., Kozioł, A. E. & Gdaniec, M. (1991). Chem. Commun. pp. 889-890. open in new tab
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470. open in new tab
  13. Pillay, M. N., van der Walt, H., Staples, R. J. & van Zyl, W. E. (2015). J. Organomet. Chem. 794, 33-39. open in new tab
  14. Przychodzeń , W. (2004). Phosphorus Sulfur Silicon, 179, 1621-1633. open in new tab
  15. Przychodzeń , W. & Chojnacki, J. (2008). Heteroat. Chem. 19, 271-282. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8. open in new tab
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148-155. open in new tab
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925. open in new tab
  19. Wiberg, K. B. (2003). J. Org. Chem. 68, 9322-9329. open in new tab
  20. Zyl, W. E. van & Woollins, J. D. (2013). Coord. Chem. Rev. 257, 718- 731.
  21. Acta Cryst. (2018). E74, 212-216 open in new tab
  22. C10-P1-O1-C1 −156.0 (5) O3-C13-C14-C15 −179.6 (6) open in new tab
  23. S1-P1-O1-C1 93.6 (5) C11-C10-C15-C14 open in new tab
  24. −0.2 (10) C20-P2-O2-C4 −173.9 (5) P1-C10-C15-C14 open in new tab
  25. C21-C22-C23-O4 −179.7 (6) C15-C10-C11-C12 0.8 (10) C21-C22-C23-C24 0.2 (11) open in new tab
  26. P1-C10-C11-C12 −175.8 (5) O4-C23-C24-C25 178.9 (7) C10-C11-C12-C13 −1.3 (10) C22-C23-C24-C25 open in new tab
  27. Acta Cryst. (2018). E74, 212-216 open in new tab
  28. C16-O3-C13-C12 173.8 (6) P2-C20-C25-C24 −176.2 (6) C11-C12-C13-O3 −179.7 (6) C23-C24-C25-C20 open in new tab
Verified by:
Gdańsk University of Technology

seen 79 times

Recommended for you

Meta Tags