Degradation kinetics and mechanism of pentoxifylline by ultraviolet activated peroxydisulfate - Publication - MOST Wiedzy


Degradation kinetics and mechanism of pentoxifylline by ultraviolet activated peroxydisulfate


Degradation of pentoxifylline (PTX) by sodium peroxydisulfate (SPDS) assisted by UV irradiation has been investigated in deionized water. The treatment was more favorable over direct photolysis or peroxydisulfate oxidation alone. The effects of various parameters, including different dosage of oxidant agent, PTX concentration, initial solution pH levels, and the presence of inorganic ions like chloride, nitrate and carbonate have been evaluated. The rate of PTX decomposition depends on the oxidant agent dose. The highest degradation was determined at pH 10.5, which can be explained by the generation of additional hydroxyl radicals (HOc) in the reaction between sulfate radicals and hydroxide ions. The presence of inorganic ions, especially the carbonate ions quench valuable sulfate radicals and have successfully retarded the PTX decomposition. Six PTX oxidation products were identified using UPLC-QTOF-MS for trials in a basic environment. The main degradation product (3,7-dimethyl-6-(5- oxohexyloxy)-3,7-dihydro-2H-purin-2-one) was isolated by column chromatography and identified by 1HNMR and LC MS analyzes.


  • 0


  • 1

    Web of Science

  • 2



artykuł w czasopiśmie wyróżnionym w JCR
Published in:
RSC Advances no. 8, edition 42, pages 23648 - 23656,
ISSN: 2046-2069
Publication year:
Bibliographic description:
Kamińska B., Hemine K., Skwierawska A., Kozłowska-Tylingo K.: Degradation kinetics and mechanism of pentoxifylline by ultraviolet activated peroxydisulfate// RSC Advances. -Vol. 8, iss. 42 (2018), s.23648-23656
Digital Object Identifier (open in new tab) 10.1039/c8ra02631a
Bibliography: test
  1. M. Al Aukidy, P. Verlicchi, A. Jelic, M. Petrovic and D. Barcelò, Sci. Total Environ., 2012, 438, 15-25. open in new tab
  2. T. H. Fang, F. H. Nan, T. S. Chin and H. M. Feng, Mar. Pollut. Bull., 2012, 64, 1435-1444. open in new tab
  3. L. P. Padhye, H. Yao, F. T. Kung'u and C. H. Huang, Water Res., 2014, 51, 266-276. open in new tab
  4. Y. Ji, Y. Yang, L. Zhou, L. Wang, J. Lu, C. Ferronato and J. M. Chovelon, Water Res., 2018, 133, 299-309. open in new tab
  5. H. s. Ou, J. Liu, J. s. Ye, L. l. Wang, N. y. Gao and J. Ke, Chem. Eng. J., 2017, 308, 386-395. open in new tab
  6. R. Zhang, Y. Yang, C. H. Huang, N. Li, H. Liu, L. Zhao and P. Sun, Environ. Sci. Technol., 2016, 50, 2573-2583. open in new tab
  7. R. E. Huie, C. L. Clion and P. Neta, Int. J. Radiat. Appl. Instrum., Part A, 1991, 38, 477-481. open in new tab
  8. A. Ghauch and A. M. Tuqan, Chem. Eng. J., 2012, 183, 162- 171. open in new tab
  9. Y. q. Gao, N. y. Gao, Y. Deng, Y. q. Yang and Y. Ma, Chem. Eng. J., 2012, 195-196, 248-253. open in new tab
  10. C. Tan, N. Gao, W. Chu, C. Li and M. R. Templeton, Sep. Purif. Technol., 2012, 95, 44-48. open in new tab
  11. G. V Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513-886. open in new tab
  12. A. Y. C. Lin, T. H. Yu and C. F. Lin, Chemosphere, 2008, 74, 131-141. open in new tab
  13. M. Magureanu, D. Piroi, N. B. Mandache, V. David, A. Medvedovici and V. I. Parvulescu, Water Res., 2010, 44, 3445-3453. open in new tab
  14. J. C. Abbar, S. J. Malode and S. T. Nandibewoor, Bioelectrochemistry, 2012, 83, 1-7. open in new tab
  15. M. M. Huber, S. Korhonen, T. A. Ternes and U. Von Gunten, Water Res., 2005, 39, 3607-3617. open in new tab
  16. S. A. Snyder, E. C. Wert, D. J. Rexing, R. E. Zegers and D. D. Drury, Ozone: Sci. Eng., 2006, 28, 445-460. open in new tab
  17. B. Kamińska, A. Skwierawska, K. Kozłowska-Tylingo, R. Tomczak-Wandzel, A. Pazik and K. Majewska, Environ. Prot. Eng., 2017, 43, 31-47. open in new tab
  18. W. Li, V. Nanaboina, Q. Zhou and G. V. Korshin, Water Res., 2012, 46, 403-412. open in new tab
  19. C. Sun, R. Zhou, J. E., J. Sun and H. Ren, RSC Adv., 2015, 5, 57058-57066. open in new tab
  20. B. A. Wols, C. H. M. Hofman-Caris, D. J. H. Harmsen and E. F. Beerendonk, Water Res., 2013, 47, 5876-5888. open in new tab
  21. Q. Zhang, J. Chen, C. Dai, Y. Zhang and X. Zhou, J. Chem. Technol. Biotechnol., 2015, 90, 701-708. open in new tab
  22. C. Liang, Z. S. Wang and C. J. Bruell, Chemosphere, 2007, 66, 106-113. open in new tab
  23. C. Tan, N. Gao, Y. Deng, Y. Zhang, M. Sui, J. Deng and S. Zhou, J. Hazard. Mater., 2013, 260, 1008-1016. open in new tab
  24. J. R. Bolton, K. G. Bircher, W. Tumas and C. A. Tolman, Pure Appl. Chem., 2001, 73, 627-637. open in new tab
  25. H. Hori, A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa and R. Arakawa, Environ. Sci. Technol., 2005, 39, 2383-2388. open in new tab
  26. M. Nie, Y. Yang, Z. Zhang, C. Yan, X. Wang, H. Li and W. Dong, Chem. Eng. J., 2014, 246, 373-382. open in new tab
  27. Z. Wang, R. Yuan, Y. Guo, L. Xu and J. Liu, J. Hazard. Mater., 2011, 190, 1083-1087. open in new tab
  28. W. J. McElroy, J. Phys. Chem., 1990, 94, 2435-2441. open in new tab
  29. M. Exner, H. Herrmann and R. Zellner, Ber. Bunsenges. Phys. Chem., 1992, 96, 470-477. open in new tab
  30. Z. Zuo, Z. Cai, Y. Katsumura and N. Chitose, Radiat. Phys. Chem., 1999, 55, 15-23. open in new tab
  31. M. Nie, C. Yan, M. Li, X. Wang, W. Bi and W. Dong, Chem. Eng. J., 2015, 279, 507-515. open in new tab
  32. J. Deng, Y. Shao, N. Gao, Y. Deng, S. Zhou and X. Hu, Chem. Eng. J., 2013, 228, 765-771. open in new tab
  33. P. Asaithambi, R. Saravanathamizhan and M. Matheswaran, Int. J. Environ. Sci. Technol., 2015, 12, 2213-2220. open in new tab
  34. M. M. Sunil Paul, U. K. Aravind, G. Pramod, A. Saha and C. T. Aravindakumar, Org. Biomol. Chem., 2014, 12, 5611- 5620.
  35. S. Steenken, Chem. Rev., 1989, 89, 503-520. open in new tab
  36. M. K. Mone and K. B. Chandrasekhar, J. Pharm. Biomed. Anal., 2010, 53, 335-342. open in new tab
  37. J. C. Abbar, S. J. Malode and S. T. Nandibewoor, Polyhedron, 2010, 29, 2875-2883. open in new tab
  38. R. N. Hegde and S. T. Nandibewoor, Anal. Lett., 2008, 41, 977-991. open in new tab
  39. R. N. Hegde, N. P. Shetti and S. T. Nandibewoor, Ind. Eng. Chem. Res., 2009, 48, 7025-7031. open in new tab
Sources of funding:
  • Działalność statusowa
Verified by:
Gdańsk University of Technology

seen 42 times

Recommended for you

Meta Tags