Diaminophosphinoboranes: effective reagents for phosphinoboration of CO2 - Publication - Bridge of Knowledge

Search

Diaminophosphinoboranes: effective reagents for phosphinoboration of CO2

Abstract

The monomeric diaminophosphinoboranes readily react with CO2 under mild conditions to cleanly form products of the general formula R2P-C(=O)-O-B(NR2)2 in the absence of a catalyst. The isolated products from the CO2-phosphinoboration were fully characterized by NMR spectroscopy, IR spectroscopy, and X-ray diffraction. The mechanism of CO2 phosphinoboration with diaminophosphinoboranes was elucidated by DFT calculations.

Citations

  • 2 1

    CrossRef

  • 0

    Web of Science

  • 2 1

    Scopus

Cite as

Full text

download paper
downloaded 15 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
RSC Advances no. 9, pages 27749 - 27753,
ISSN: 2046-2069
Language:
English
Publication year:
2019
Bibliographic description:
Szynkiewicz N., Ordyszewska A., Chojnacki J., Grubba R.: Diaminophosphinoboranes: effective reagents for phosphinoboration of CO2// RSC Advances -Vol. 9,iss. 48 (2019), s.27749-27753
DOI:
Digital Object Identifier (open in new tab) 10.1039/c9ra06638a
Bibliography: test
  1. F. G. Fontaine, M. A. Courtemanche, M. A. Légaré and E. Rochette, Coord. Chem. Rev., 2017, 334, 124-135. open in new tab
  2. D. J. Scott, M. J. Fuchter and A. E. Ashley, Chem. Soc. Rev., 2017, 46, 5689-5700. open in new tab
  3. L. Greb, P. Oña-Burgos, B. Schirmer, S. Grimme, D. W. Stephan and J. Paradies, Angew. Chem., Int. Ed., 2012, 51, 10164-10168. open in new tab
  4. D. W. Stephan, J. Am. Chem. Soc., 2015, 137, 10018-10032. open in new tab
  5. S. Mummadi, D. K. Unruh, J. Zhao, S. Li and C. Krempner, J. Am. Chem. Soc., 2016, 138, 3286-3289. open in new tab
  6. D. W. Stephan, Acc. Chem. Res., 2015, 48, 306-316. open in new tab
  7. E. Theuergarten, T. Bannenberg, M. D. Walter, D. Holschumacher, M. Freytag, C. G. Daniliuc, P. G. Jones and M. Tamm, Dalton Trans., 2014, 43, 1651-1662. open in new tab
  8. M. A. Dureen and D. W. Stephan, J. Am. Chem. Soc., 2010, 132, 13559-13568. open in new tab
  9. G. Ménard and D. W. Stephan, J. Am. Chem. Soc., 2010, 132, 1796-1797.
  10. W. B. Tolman, Activation of Small Molecules, Wiley, 2006. open in new tab
  11. F. Buß, P. Mehlmann, C. Mück-Lichtenfeld, K. Bergander and F. Dielmann, J. Am. Chem. Soc., 2016, 138, 1840-1843. open in new tab
  12. S. Bontemps, Coord. Chem. Rev., 2016, 308, 117-130. open in new tab
  13. H. Sabet-Sarvestani, M. Izadyar and H. Eshghi, J. CO2 Util., 2017, 21, 459-466. open in new tab
  14. D. W. Stephan and G. Erker, Chem. Sci., 2014, 5, 2625-2641. open in new tab
  15. M. Sajid, A. Klose, B. Birkmann, L. Liang, B. Schirmer, T. Wiegand, H. Eckert, A. J. Lough, R. Fröhlich, C. G. Daniliuc, S. Grimme, D. W. Stephan, G. Kehr and G. Erker, Chem. Sci., 2013, 213-219. open in new tab
  16. P. A. Chase and D. W. Stephan, Angew. Chem., Int. Ed., 2008, 47, 7433-7437. open in new tab
  17. D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010, 49, 46-76. open in new tab
  18. G. C. Welch, R. R. S. Juan, J. D. Masuda and D. W. Stephan, Science, 2006, 314, 1124-1126. open in new tab
  19. T. A. Rokob, I. Bakó, A. Stirling, A. Hamza and I. Pápai, J. Am. Chem. Soc., 2013, 135, 4425-4437. open in new tab
  20. M. A. Courtemanche, M. A. Légaré, L. Maron and F. G. Fontaine, J. Am. Chem. Soc., 2014, 136, 10708-10717. open in new tab
  21. T. Mahdi and D. W. Stephan, J. Am. Chem. Soc., 2014, 136, 15809-15812. open in new tab
  22. R. Declercq, G. Bouhadir, D. Bourissou, M. A. Légaré, M. A. Courtemanche, K. S. Nahi, N. Bouchard, F. G. Fontaine and L. Maron, ACS Catal., 2015, 5, 2513-2520. open in new tab
  23. T. Wang and D. W. Stephan, Chem. Commun., 2014, 50, 7007-7010. open in new tab
  24. T. Privalov, Chem.-Eur. J., 2009, 15, 1825-1829. open in new tab
  25. W.-H. Wang, X. Feng and M. Bao, in SpringerBriefs in Molecular Science, 2018, pp. 7-42. open in new tab
  26. D. Chen, Y. Wang and J. Klankermayer, Angew. Chem., Int. Ed., 2010, 49, 9475-9478. open in new tab
  27. C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2009, 48, 6643-6646. open in new tab
  28. F. Bertini, V. Lyaskovskyy, B. J. J. Timmer, F. J. J. de Kanter, M. Lutz, A. W. Ehlers, J. C. Slootweg and K. Lammertsma, J. Am. Chem. Soc., 2012, 134, 201-204. open in new tab
  29. Y. Wang, Z. H. Li and H. Wang, RSC Adv., 2018, 8, 26271- 26276. open in new tab
  30. R. T. Paine and H. Nöth, Chem. Rev., 1995, 95, 343-379. open in new tab
  31. J. A. Bailey and P. G. Pringle, Coord. Chem. Rev., 2015, 297- 298, 77-90. open in new tab
  32. J. A. Bailey, M. Ploeger and P. G. Pringle, Inorg. Chem., 2014, 53, 7763-7769. open in new tab
  33. M. Kaaz, C. Bäucker, M. Deimling, S. König, S. H. Schlindwein, J. Bender, M. Nieger and D. Gudat, Eur. J. Inorg. Chem., 2017, 2017, 4525-4532. open in new tab
  34. S. J. Geier, T. M. Gilbert and D. W. Stephan, Inorg. Chem., 2011, 50, 336-344. open in new tab
  35. P. P. Power, Angew. Chem., Int. Ed. Engl., 1990, 29, 449-460. open in new tab
  36. D. C. Pestana and P. P. Power, J. Am. Chem. Soc., 1991, 113, 8426-8437. open in new tab
  37. S. J. Geier, T. M. Gilbert and D. W. Stephan, J. Am. Chem. Soc., 2008, 130, 12632-12633. open in new tab
  38. E. N. Daley, C. M. Vogels, S. J. Geier, A. Decken, S. Doherty and S. A. Westcott, Angew. Chem., Int. Ed., 2015, 54, 2121- 2125. open in new tab
  39. M. B. Kindervater, J. F. Binder, S. R. Baird, C. M. Vogels, S. J. Geier, C. L. B. Macdonald and S. A. Westcott, J. Organomet. Chem., 2019, 880, 378-385. open in new tab
  40. S. J. Geier, C. M. Vogels, N. R. Mellonie, E. N. Daley, A. Decken, S. Doherty and S. A. Westcott, Chem.-Eur. J., 2017, 23, 14485-14499. open in new tab
  41. S. J. Geier, J. H. W. Lafortune, D. Zhu, S. C. Kosnik, C. L. B. Macdonald, D. W. Stephan and S. A. Westcott, Dalton Trans., 2017, 46, 10876-10885. open in new tab
  42. J. Lafortune, Z.-W. Qu, K. Bamford, A. Tromova, S. Westcott and D. W. Stephan, Chem.-A Eur. J., 2019, DOI: 10.1002/ chem.201903407. open in new tab
  43. N. Szynkiewicz, Ł. Ponikiewski and R. Grubba, Dalton Trans., 2018, 47, 16885-16894. open in new tab
  44. N. Szynkiewicz, Ł. Ponikiewski and R. Grubba, Chem. Commun., 2019, 55, 2928-2931. open in new tab
  45. P. Pyykkö and M. Atsumi, Chem.-Eur. J., 2009, 15, 186-197. open in new tab
  46. P. Pyykkö and M. Atsumi, Chem.-Eur. J., 2009, 15, 12770- 12779.
  47. F. H. Allen, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, in International Tables for Crystallography, ed. T. Hahn, International Union of Crystallography, Chester, England, 2006, vol. A, pp. 790-811. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 142 times

Recommended for you

Meta Tags