Abstract
The domination subdivision number sd(G) of a graph G is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number of G. It has been shown [10] that sd(T)<=3 for any tree T. We prove that the decision problem of the domination subdivision number is NP-complete even for bipartite graphs. For this reason we define the domination multisubdivision number of a nonempty graph G as a minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. We show that msd(G)<=3 for any graph G. The domination subdivision number and the domination multisubdivision number of a graph are incomparable in general, but we show that for trees these two parameters are equal. We also determine the domination multisubdivision number for some classes of graphs.
Citations
-
6
CrossRef
-
0
Web of Science
-
7
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Discussiones Mathematicae Graph Theory
pages 829 - 839,
ISSN: 1234-3099 - Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Dettlaff M., Raczek J., Topp J.: Domination subdivision and domination multisubdivision numbers of graphs// Discussiones Mathematicae Graph Theory. -, iss. 39 (2019), s.829-839
- DOI:
- Digital Object Identifier (open in new tab) 10.7151/dmgt.2103
- Verified by:
- Gdańsk University of Technology
seen 177 times
Recommended for you
TOTAL DOMINATION MULTISUBDIVISION NUMBER OF A GRAPH
- D. Avella-alaminos,
- M. Dettlaff,
- M. Lemańska
- + 1 authors