Ecotoxicological equilibria of triclosan inMicrotox, XenoScreen YES/YAS, Caco2, HEPG2 and liposomal systems are affected by the occurrence of other pharmaceutical and personal care emerging contaminants - Publication - MOST Wiedzy

Search

Ecotoxicological equilibria of triclosan inMicrotox, XenoScreen YES/YAS, Caco2, HEPG2 and liposomal systems are affected by the occurrence of other pharmaceutical and personal care emerging contaminants

Abstract

Contaminants of emerging concernmay be considered as any chemicals or factorswhose unintended continuous release and persistence in the environmentmay lead to any observable undesirable response of living beings. Still not much is known on reciprocal toxicological impact of given chemicals when present in binary or more complex mixtures. In thiswork, an attemptwas thus undertaken to study the impact of butylparaben,methylparaben and diclofenac on toxicological behavior and properties of triclosan (at varying concentration levels)with respect to Microtox, XenoScreen YES/YAS, Caco-2, HEPG2, and liposomal systems.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
SCIENCE OF THE TOTAL ENVIRONMENT no. 719,
ISSN: 0048-9697
Language:
English
Publication year:
2020
Bibliographic description:
Oliver M., Kudłak B., Wieczerzak M., Reis S., Lima S., Segundo M., Miro M.: Ecotoxicological equilibria of triclosan inMicrotox, XenoScreen YES/YAS, Caco2, HEPG2 and liposomal systems are affected by the occurrence of other pharmaceutical and personal care emerging contaminants// SCIENCE OF THE TOTAL ENVIRONMENT -Vol. 719, (2020), s.137358-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.scitotenv.2020.137358
Bibliography: test
  1. Abendroth, J.A., Blankenship, E.E., Martin, A.R., Roeth, F.W., 2011. Joint action analysis uti- lizing concentration addition and independent action models. Weed Technol. 25, 436-446. https://doi.org/10.1614/WT-D-10-00102.1. open in new tab
  2. Aker, A.M., Ferguson, K.K., Rosario, Z.Y., Mukherjee, B., Alshawabkeh, A.N., Cordero, J.F., Meeker, J.D., 2019. The associations between prenatal exposure to triclocarban, phe- nols and parabens with gestational age and birth weight in northern Puerto Rico. En- viron. Res. 169, 41-51. https://doi.org/10.1016/j.envres.2018.10.030. open in new tab
  3. Allmyr, M., Harden, F., Toms, L.M.L., Mueller, J.F., McLachlan, M.S., Adolfsson-Erici, M., Sandborgh-Englund, G., 2008. The influence of age and gender on triclosan concen- trations in Australian human blood serum. Sci. Tot. Environ. 393, 162-167. open in new tab
  4. Backhaus, T., Faust, M., 2012. Predictive environmental risk assessment of chemical mix- tures: a conceptual framework. Environ. Sci. Technol. 46, 2564-2573. open in new tab
  5. Bangham, A.D., De Gier, J., Greville, G.D., 1967. Osmotic properties and water permeability of phospholipid liquid crystals. Chem. Physics Lipids 1, 225-246. open in new tab
  6. Belden, J.B., Gilliom, R.J., Lydy, M.J., 2007. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr. Environ. Assess. 3, 364-372. open in new tab
  7. Bever, C.S., Rand, A.A., Nording, M., Taft, D., Kalanetra, K.M., Mills, D.A., Breck, M.A., Smilowitz, J.T., German, J.B., Hammock, B.D., 2018. Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere 203, 467-473. open in new tab
  8. Bletsou, A.A., Jeon, J., Hollender, J., Archontaki, E., Thomaidis, N.S., 2015. Targeted and non- targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC- Trends Anal. Chem. 66, 32-44. open in new tab
  9. Burkina, V., Rasmussen, M.K., Pilipenko, N., Zamaratskaia, G., 2017. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450. Tox- icology 375, 10-27. open in new tab
  10. COMMISSION IMPLEMENTING DECISION (EU), 2018. 2018/840 of 5 June 2018 establish- ing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495. Official Journal EU L 141, 9-12 7.6. open in new tab
  11. Ebele, A.J., Abdullah, M.A.-E., Harrad, S., 2017. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3, 1-16. open in new tab
  12. EU, 2012. Report "Toxicity and Assessment of Chemical Mixtures" of DG Health & Con- sumers. 978-92-79-30700-3 https://doi.org/10.2772/21444. open in new tab
  13. Freitas, R., Coppola, F., Costa, S., Pretti, C., Intorre, L., Meucci, V., Amadeu, A.M.V.M., Sole, M., 2019b. The influence of temperature on the effects induced by Triclosan and Diclofenac in mussels. Sci. Tot. Environ. 663, 992-999. open in new tab
  14. Gao, Y., Feng, J., Kang, L., Xu, X., Zhu, L., 2018. Concentration addition and independent ac- tion model: which is better in predicting the toxicity for metal mixtures on zebrafish larvae. Sci. Tot. Environ. 610-611, 442-450. open in new tab
  15. Hadrup, N., Taxvig, C., Pedersen, M., Nellemann, C.L., Hass, U., Vinggaard, A.M., 2013. Concentrationaddition, independent action and generalized concentration addition models for mixture effect prediction of sexhormone synthesis in vitro. PLoS One 8 (8). https://doi.org/10.1371/journal.pone.0070490. open in new tab
  16. Hope, M.J., Bally, M.B., Webb, G., Cullis, P.R., 1985. Production of large Unilamellar vesicles by a rapid extrusion procedure characterization of size distribution, trapped volume and ability to maintain a membrane-potential. Biochim. Biophys. Acta Biomembr. 812, 55-65. open in new tab
  17. Jonkers, N., Sousa, A., Galante-Oliveira, S., Barroso, C.M., Kohler, H.-P.E., Giger, W., 2010. Occurrence and Sources of Selected Phenolic Endocrine Disruptors in Ria de Aveiro, Portugal. 17 pp. 834-843. open in new tab
  18. Karwacka, A., Zamkowska, D., Radwan, M., Jurewicz, J., 2019. Exposure to modern, wide- spread environmental endocrine disrupting chemicals and their effect on the repro- ductive potential of women: an overview of current epidemiological evidence. Hum. Fertil. 22 (1), 2-25. https://doi.org/10.1080/14647273.2017.1358828. open in new tab
  19. Kudłak, B., Wieczerzak, M., Namieśnik, J., 2019. Bisphenols (a, S, and F) affect the basic hormonal activity determined for pharmaceuticals-study of Saccharomyces cerevisiae. Environ. Poll. 246, 914-920. open in new tab
  20. La Farre, M., Perez, S., Kantiani, L., Barcelo, D., 2008. Fate and toxicity of emerging pollut- ants, their metabolites and transformation products in the aquatic environment. TrAC -Trends Anal. Chem. 27, 991-1007. open in new tab
  21. Lee, H.R., Hwang, K.A., Nam, K.H., Kim, H.C., Choi, K.C., 2014. Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem. Res. Toxicol. 27, 834-842. open in new tab
  22. Liu, L., Liu, S.-S., Yu, M., Zhang, J., Chen, F., 2015. Concentration addition prediction for a multiple-component mixture containing no effect chemicals. Anal. Methods (23), 9912-9917. open in new tab
  23. Lonappan, L., Brar, S.K., Das, R.K., Verma, M., Surampalli, R.Y., 2016. Diclofenac and its transformation products: environmental occurrence and toxicity-a review. Environ. Int. 96, 127-138. open in new tab
  24. Lorenzo, M., Campo, J., Pico, Y., 2018. Analytical challenges to determine emerging persis- tent organic pollutants in aquatic ecosystems. TrAC Trends Anal. Chem. 103, 137-155. open in new tab
  25. Ma, H., Zheng, L., Li, Y., Pan, S., Hu, J., Yu, Z., Zhang, G., Sheng, G., Fu, J., 2013. Triclosan re- duces the levels of global DNA methylation in HepG2 cells. Chemosphere 90, 1023-1029. open in new tab
  26. Marugán, J., Bru, D., Pablos, C., Catalá, M., 2012. Comparative evaluation of acute toxicity by Vibrio fischeri and fern spore based bioassays in the follow-up of toxic chemicals degradation by photocatalysis. J. Haz. Mat. 213, 117-122. open in new tab
  27. McEneff, G., Barron, L., Kelleher, B., Paull, B., Quinn, B., 2014. A year-long study of the spa- tial occurrence and relative distribution of pharmaceutical residues in sewage efflu- ent, receiving marine waters and marine bivalves. Sci. Tot. Environ. 476-477, 317-326. open in new tab
  28. Mersch-Sundermann, V., Knasmüller, S., Wu, X.J., Darroudi, F., Kassie, F., 2004. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicol 198, 329-340. open in new tab
  29. Okubo, T., Yokoyama, Y., Kano, K., Kano, I., 2001. ER-dependent estrogenic activity of parabens assessed by proliferation of human breast cancer MCF-7 cells and expres- sion of ERα and PR. Food Chem. Toxicol. 39, 1225-1232. open in new tab
  30. Oliver, M., Bauzá, A., Frontera, A., Miró, M., 2016. Fluorescent lipid nanoparticles as bio- membrane models for exploring emerging contaminant bioavailability supported by density functional theory calculations. Environ. Sci. Technol. 50, 7135-7143. open in new tab
  31. Parasassi, T., Conti, F., Gratton, E., 1986. Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorom- etry. Cell. Mol. Bio. 32, 103-108. open in new tab
  32. Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R.M., Gratton, E., 1991. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluo- rescence. Biophys. J. 60, 179-189. open in new tab
  33. Perez, A.L., Sylor, D., Anderle, M., Slocombe, A.J., Lew, M.G., Unice, K.M., Donovan, E.P., 2013. Triclosan occurrence in freshwater systems in the United States (1999-2012): a meta-analysis. Environ. Toxicol. Chem. 32, 1479-1487. open in new tab
  34. Petrie, B., Youdan, J., Barden, R., Kasprzyk-Hordern, B., 2016. Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high- performance liquid chromatography tandem mass spectrometry. J. Chrom. A 1431, 64-78. open in new tab
  35. Pollack, A.Z., Mumford, S.L., Krall, J.R., Carmichael, A.E., Sjaarda, L.A., Perkins, N.J., Kannan, K., Schisterman, E.F., 2018. Exposure to bisphenol A, chlorophenols, benzophenones, and parabens in relation to reproductive hormones in healthy women: a chemical mixture approach. Environ. Int. 120, 137-144. https://doi.org/10.1016/j. envint.2018.07.028. open in new tab
  36. Reemtsma, T., Berger, U., Arp, H.P.H., Gallard, H., Knepper, T.P., Neumann, M., Quintana, J.B., de Voogt, P., 2016. Mind the gap: persistent and mobile organic compounds water contaminants that slip through. Environ. Sci. Technol. 50, 10308-10315. open in new tab
  37. Richardson, S.D., Kimura, S.Y., 2016. Water analysis: emerging contaminants and current issues. Anal. Chem. 88, 546-582. open in new tab
  38. Richardson, S.D., Kimura, S.Y., 2017. Emerging environmental contaminants: challenges facing our next generation and potential engineering solutions. Environ. Technol. In- novation 8, 40-56. open in new tab
  39. Richardson, S.D., Ternes, T.A., 2014. Water analysis: emerging contaminants and current issues. Anal. Chem. 86, 2813-2848. open in new tab
  40. Richardson, S.D., Ternes, T.A., 2018. Water analysis: emerging contaminants and current issues. Anal. Chem. 90, 398-428. open in new tab
  41. Richmond, E.K., Grace, M.R., Kelly, J.J., Reisinger, A.J., Rosi, E.J., Walters, D.M., 2017. Phar- maceuticals and personal care products (PPCPs) are ecological disrupting compounds (EcoDC). Elem. Sci. Anth. 5, 66. open in new tab
  42. Rudzok, S., Schlink, U., Herbarth, O., Bauer, M., 2010. Measuring and modeling of binary mixture effects of pharmaceuticals and nickel on cell viability/cytotoxicity in the human hepatoma derived cell line HepG2. Toxicol. App. Pharmacol. 244, 336-343. open in new tab
  43. Schnoor, J.L., 2014. Re-emergence of emerging contaminants. Environ. Sci. Technol. 48, 11019-11020. open in new tab
  44. Wang, L., Mao, B., He, H., Zhong, Y., Yu, Z., Yang, Y., Li, H., An, J., 2019. Comparison of hep- atotoxicity and mechanisms induced by triclosan (TCS) and methyl-triclosan (MTCS) in human liver hepatocellular HepG2 cells. Toxicol. Res. https://doi.org/10.1039/ C8TX00199E. open in new tab
  45. Wieczerzak, M., Kudłak, B., Namieśnik, J., 2015. Environmentally oriented models and methods for the evaluation of the drug×drug interaction's effects. Crit. Rev. Anal. Chem. 45, 131-155. open in new tab
  46. Wieczerzak, M., Kudłak, B., Yotova, G., Nedyalkova, M., Tsakovski, S., Simeonov, V., Namieśnik, J., 2016a. Modeling of pharmaceuticals mixtures toxicity with deviation ratio and best-fit functions models. Sci. Tot. Environ. 571, 259-268. open in new tab
  47. Wieczerzak, M., Namieśnik, J., Kudłak, B., 2016b. Bioassays as one of the green chemistry tools for assessing environmental quality: a review. Env. Int. 94, 341-361. open in new tab
  48. Wu, Y., Chitranshi, P., Loukotková, L., da Costa, G.G., Beland, F.A., Zhang, J., Fang, J.-L., 2017. Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in he- patic cells. Archives of Toxicol. 91, 2405-2423. open in new tab
  49. Zhang, H., Shao, X., Zhao, H., Li, X., Wei, J., Yang, C., Cai, Z., 2019a. Integration of metabo- lomics and lipidomics reveals metabolic mechanisms of triclosan-induced toxicity in human hepatocytes. Environ. Sci. Technol. 53, 5406-5415. open in new tab
  50. Zhou, S., Chen, Q., di Paolo, C., Shao, Y., Hollert, H., Seiler, T.-B., 2019. Behavioral profile al- terations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals. Sci. Tot. Environ. 664, 89-98. open in new tab
Sources of funding:
  • 2017/01/X/ST4/00474
Verified by:
Gdańsk University of Technology

seen 24 times

Recommended for you

Meta Tags