Effect of Amino Acids and Sodium Chloride on d-Sorbitol in Aqueous Solutions at Different Temperatures: Volumetric and Acoustic Approach - Publication - Bridge of Knowledge

Search

Effect of Amino Acids and Sodium Chloride on d-Sorbitol in Aqueous Solutions at Different Temperatures: Volumetric and Acoustic Approach

Abstract

Apparent molar volumes and apparent molar compressibilities for d-sorbitol in (0.05, 0.1, 0.2 and 0.3) mol·kg−1 aqueous solutions of l-alanine, l-cysteine and l-histidine and NaCl have been determined from measurements of solution density at T = (288.15, 298.15, 308.15 and 318.15) K and sound velocity at T = 298.15 K, as a function of the concentration of the sugar alcohol. The data were used to obtain the limiting apparent molar volumes, limiting apparent molar compressibilities and the corresponding transfer parameters. Limiting apparent molar expansibilities and their second order derivatives and volume interaction coefficients were also estimated. These parameters are discussed in terms of d-sorbitol and co-solute (amino acid or sodium chloride) interactions in aqueous solutions.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 21 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF SOLUTION CHEMISTRY no. 47, pages 1794 - 1823,
ISSN: 0095-9782
Language:
English
Publication year:
2018
Bibliographic description:
Warmińska D.: Effect of Amino Acids and Sodium Chloride on d-Sorbitol in Aqueous Solutions at Different Temperatures: Volumetric and Acoustic Approach// JOURNAL OF SOLUTION CHEMISTRY. -Vol. 47, nr. 11 (2018), s.1794-1823
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10953-018-0820-2
Bibliography: test
  1. Ortiz, M.E., Bleckwedel, J., Raya, R.R., Mozzi, F.: Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl. Microbiol. Biotechnol. 97, 4713-4726 (2013) open in new tab
  2. Amaral, L.F.B., Camilo, N.S., Pereda, M.D.C.V., Levy, C.E., Moriel, P., Mozzola, P.G.: Evaluation of antimicrobial effectiveness of C-8 xylitol monoester as an alternative preservative for cosmetic prod- ucts. Int. J. Cosm. Sci. 33, 391-397 (2011) open in new tab
  3. Grembecka, M.: Sugar alcohols-their role in the modern world of sweeteners: a review. Eur. Food Res. Technol. 242, 1-14 (2015) open in new tab
  4. Kumar, V., Chari, R., Sharma, V.K., Kalonia, D.S.: Modulation of the thermodynamic stability of pro- teins by polyols: significance of polyol hydrophobicity and impact on the chemical potential of water. Int. J. Pharm. 413, 19-28 (2011) open in new tab
  5. Pazhang, M., Mehrnejad, F., Pazhang, Y., Falahati, H., Chaparzadeh, N.: Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents. Bio- technol. Appl. Biochem. 63, 206-213 (2016) open in new tab
  6. Mathew, A.P., Dufresne, A.: Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules 3, 1101-1108 (2002) open in new tab
  7. Patriarca, A., Larumbe, G., Buera, M.P., Vaamonde, G.: Stimulating effect of sorbitol and xylitol on germination and growth of some xerophilic fungi. Food Microbiol. 28, 1463-1467 (2011) open in new tab
  8. Franks, F., Reid, D.S., Suggett, A.: Conformation and hydration of sugars and related compounds in dilute aqueous solution. J. Solution Chem. 2, 99-118 (1973) open in new tab
  9. Yasra, R.V., Ahluwalia, J.C.: Thermodynamics of transfer of sorbitol and mannitol from water to aque- ous solutions of urea, guanidine hydrochloride and sodium chloride. J. Chem. Soc. Faraday Trans. I 78, 1677-1687 (1981) open in new tab
  10. Ali, A., Bidhuri, P.: Solvation thermodynamics of xylitol in water and in aqueous amino acids at 298.15 K. J. Phys. Org. Chem. 26, 54-58 (2013) open in new tab
  11. Ren, X., Zhu, C., Ma, Y.: Volumetric and viscometric studies of amino acids in mannitol aqueous solu- tions at T = (293.15 to 323.15) K. J. Chem. Eng. Data 60, 1787-1802 (2015) open in new tab
  12. Wang, X., Fu, R., Guo, Y., Lin, R.: Volumetric properties of amino acids in aqueous d-mannitol solu- tions at 298.15 K. J. Mol. Liq. 197, 73-76 (2014) open in new tab
  13. Liu, M., Wang, L., Li, G., Dong, L., Sun, D., Zhu, L., Di, Y.: Enthalpy of dilution and volumetric properties of N-glycylglycine in aqueous xylitol solutions at T = 298.15 K. J. Chem. Thermodyn. 43, 983-988 (2011) open in new tab
  14. Guo, L., Xu, L., Ma, L., Lin, R.: Transfer volumes of small peptides from water to aqueous xylitol solutions at 298.15 K. J. Solution Chem. 38, 383-389 (2009) open in new tab
  15. DiPaola, G., Belleau, B.: Apparent molal heat capacities and volumes of amino acids in aqueous pol- yol solutions. Can. J. Chem. 56, 1827-1831 (1978) open in new tab
  16. Jha, N.S., Kishore, N.: Thermodynamics of the interaction of a homologous series of amino acids with sorbitol. J. Solution Chem. 39, 1454-1473 (2010) open in new tab
  17. Ren, X., Zhu, C., Ma, Y.: Volumetric and viscometric study of amino acids in aqueous sorbitol solu- tion at different temperatures. J. Chem. Thermodyn. 93, 179-192 (2016) open in new tab
  18. Banipal, P.K., Kaur, K., Banipal, T.S.: Modulation in physico-chemical characteristics of some poly- hydroxy solutes in presence of l-glycine: volumetric and NMR spectroscopic approach. Fluid Phase Equilib. 402, 113-123 (2015) open in new tab
  19. Banipal, T.S., Sharma, S., Lark, B.S., Banipal, P.K.: Thermodynamic and transport properties of sorbi- tol and mannitol in water and in mixed aqueous solutions. Indian J. Chem. 38, 1106-1115 (1999) open in new tab
  20. Wurzburger, S., Sartorio, R., Guarino, G., Nisi, M.: Volumetric properties of aqueous solutions of pol- yols between 0.5 and 25 °C. J. Chem. Soc. Faraday Trans. I. 84, 2279-2287 (1988) open in new tab
  21. Jasra, R.V., Ahluwalia, J.C.: Thermodynamics of transfer of sorbitol and mannitol from water to aque- ous solutions of urea, guanidine hydrochloride and sodium chloride. J. Chem. Soc. Faraday Trans. I. 78, 1677-1687 (1988) open in new tab
  22. Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613-4617 (1969) open in new tab
  23. Shahidi, F., Farrell, P.G., Edward, J.T.: Partial molar volumes of organic compounds in water. III. Car- bohydrates. J. Solution Chem. 5, 807-816 (1976) open in new tab
  24. Gurney, R.W.: Ionic Processes in Solution, vol. 3, pp. 1-20. McGraw Hill, New York (1953)
  25. Kapcha, L.H., Rossky, P.J.: A Simple atomic-level hydrophobicity scale reveals protein interfacial structure. J. Mol. Biol. 426, 484-498 (2014) open in new tab
  26. McMillan Jr., W.G., Mayer, J.E.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276-305 (1945) open in new tab
  27. Friedman, H.L., Krishnan, C.V.: Studies of hydrophobic bonding in aqueous alcohols: enthalpy meas- urements and model calculations. J. Solution Chem. 2, 119-140 (1973) open in new tab
Verified by:
Gdańsk University of Technology

seen 106 times

Recommended for you

Meta Tags