Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers - Publication - Bridge of Knowledge


Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers


It seems to be obvious that conditions changes during polyols synthesis have impact on the polyols properties. Even the chemical formula is the same or similar, physicochemical properties and also molecular weight of polyols might be different and are significant in term of future polyurethanes properties and processing. In this work, fully bio-based poly(propylene succinate)s synthesized at different temperature conditions were used as a polyol in thermoplastic polyurethane elastomers (TPU) synthesis. Novel bio-based TPUs were synthesized with the use of mentioned bio-based linear polyester polyols, poly(propylene succinate)s and also 4,4-diphenylmethane diisocyanate (MDI) and a chain extender 1,4-butanediol (BDO) or 1,3-propanediol (PDO), both with the natural origin. Influence of synthesized bio-based polyols on thermoplastic polyurethane elastomers characteristic was determined based on investigation of chemical structure, thermal, thermomechanical, mechanical and physical properties of synthesized bio-based TPU. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) were applied to the chemical formula determination. Thermogravimetry was supportive in thermal analysis, dynamic mechanical analysis (DMA), tensile test and hardness were used to determine thermomechanical behavior and mechanical properties at static and dynamic condition. The density of the obtained materials was also measured. It was established that using obtained fully bio-based polyester polyols the thermoplastic polyurethane elastomers can be synthesis without catalyst usage. Based on the results demonstrated greater influence of type of chain extender on bio-based TPU properties than condition of bio-based polyester synthesis. Each sample was characterized by glass temperature (Tg) ca. 0-5°C and similar thermal stability ca. 320°C. The tensile strength of prepared bio-based TPUs reach even 30 MPa with an elongation at break ca. 550%.


  • 4 3


  • 3 4

    Web of Science

  • 3 9


Cite as

Full text

download paper
downloaded 64 times
Publication version
Accepted or Published Version
Creative Commons: CC-BY open in new tab



artykuły w czasopismach
Published in:
EUROPEAN POLYMER JOURNAL no. 123, pages 1 - 10,
ISSN: 0014-3057
Publication year:
Bibliographic description:
Parcheta P., Głowińska E., Datta J.: Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers// EUROPEAN POLYMER JOURNAL -Vol. 123, (2020), s.1-10
Digital Object Identifier (open in new tab) 10.1016/j.eurpolymj.2019.109422
Bibliography: test
  1. P. Parcheta, J. Datta, Environmental impact and industrial development of bior- enewable resources for polyurethanes, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1986-2016, https://doi.org/10.1080/10643389.2017.1400861. open in new tab
  2. ZMR, Zion Mark. Res. (2018). https://www.zionmarketresearch.com/news/ thermoplastic-polyurethane-market.
  3. H. Sardon, A. Pascual, D. Mecerreyes, D. Taton, H. Cramail, J.L. Hedrick, Synthesis of polyurethanes using organocatalysis: A perspective, Macromolecules 48 (2015) 3153-3165, https://doi.org/10.1021/acs.macromol.5b00384. open in new tab
  4. S. Niyogi, S. Sarkar, B. Adhikari, Catalytic activity of DBTDL in polyurethane for- mation, Indian J. Chem. Technol. 9 (2002) 330-333.
  5. M.A. Semsarzadeh, A.H. Navarchian, Effects of NCO/OH ratio and catalyst con- centration on structure, thermal stability, and crosslink density of poly(urethane- isocyanurate), J. Appl. Polym. Sci. 90 (2003) 963-972, https://doi.org/10.1002/ app.12691. open in new tab
  6. Q. Zhang, X.M. Hu, M.Y. Wu, Y.Y. Zhao, C. Yu, Effects of different catalysts on the structure and properties of polyurethane/water glass grouting materials, J. Appl. Polym. Sci. 135 (2018) 1-11, https://doi.org/10.1002/app.46460. open in new tab
  7. Y.V. Yakovlev, Z.O. Gagolkina, E.V. Lobko, I. Khalakhan, V.V. Klepko, The effect of catalyst addition on the structure, electrical and mechanical properties of the cross- linked polyurethane/carbon nanotube composites, Compos. Sci. Technol. 144 (2017) 208-214, https://doi.org/10.1016/j.compscitech.2017.03.034. open in new tab
  8. A.M. Nacas, A.C. Chinellato, D.J. dos Santos, Lithium catalyst concentration influ- ence on bio-polyols structure and polyurethane adhesives properties, Rev. Mater. 24 (2019) 1-9, https://doi.org/10.1590/s1517-707620190003.0716. open in new tab
  9. Y. Schellekens, B. Van Trimpont, P.J. Goelen, K. Binnemans, M. Smet, M.A. Persoons, D. De Vos, Tin-free catalysts for the production of aliphatic ther- moplastic polyurethanes, Green Chem. 16 (2014) 4401-4407, https://doi.org/10. 1039/c4gc00873a. open in new tab
  10. A.M. Nacas, S.E. Vidotti, A.C. Chinellato, D.J. do. Santos, The role of polyol reaction catalysts in the cure kinetics and mechanical behavior of polyurethane adhesives, J. Adhes. 94 (2018) 880-892, https://doi.org/10.1080/00218464.2017.1380524. open in new tab
  11. P. Kasprzyk, J. Datta, Effect of molar ratio [NCO]/[OH] groups during prepolymer chains extending step on the morphology and selected mechanical properties of final bio-based thermoplastic Poly (Ether-Urethane) materials, Polym. Eng. Sci. (2018), https://doi.org/10.1002/pen.24874. open in new tab
  12. J. Huang, L. Zhang, Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin, Polym. (United Kingdom) 43 (2002) 2287-2294. open in new tab
  13. S. Desai, I.M. Thakore, B.D. Sarawade, S. Devi, Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes, Eur. Polym. J. 36 (2000) 711-725. open in new tab
  14. T. Suzuki, M. Shibayama, K. Hatano, M. Ishii, [NCO]/[OH] and acryl-polyol con- centration dependence of the gelation process and the microstructure analysis of polyurethane resin by dynamic light scattering, Polymer (Guildf). 50 (2009) 2503-2509, https://doi.org/10.1016/j.polymer.2009.03.035. open in new tab
  15. R. Gogoi, M.S. Alam, R.K. Khandal, Effect of increasing NCO/OH molar ratio on the physicomechanical and thermal properties of isocyanate terminated polyurethane prepolymer, Int. J. Basic Appl. Sci. 3 (2014) 118-123, https://doi.org/10.14419/ ijbas.v3i2.2416. open in new tab
  16. P. Parcheta, J. Datta, Kinetics study of the fully bio-based poly(propylene succinate) synthesis. Functional group approach, Polym. Degrad. Stab. 155 (2018) 238-249, https://doi.org/10.1016/j.polymdegradstab.2018.07.025. open in new tab
  17. P. Parcheta, I. Koltsov, J. Datta, Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis, Polym. Degrad. Stab. 151 (2018) 90-99, https://doi.org/10.1016/j. polymdegradstab.2018.03.002. open in new tab
  18. P. Parcheta, J. Datta, Structure analysis and thermal degradation characteristics of bio-based poly(propylene succinate)s obtained by using different catalyst amounts, J. Therm. Anal. Calorim. 130 (2017) 197-206, https://doi.org/10.1007/s10973- 017-6376-3. open in new tab
  19. P. Parcheta, J. Datta, Structure-rheology relationship of fully bio-based linear polyester polyols for polyurethanes -Synthesis and investigation, Polym. Test. 67 (2018) 110-121, https://doi.org/10.1016/j.polymertesting.2018.02.022. open in new tab
  20. Z.S. Petrović, J. Milić, F. Zhang, J. Ilavsky, Fast-responding bio-based shape memory thermoplastic polyurethanes, Polymer (Guildf). 121 (2017) 26-37, https://doi.org/10.1016/j.polymer.2017.05.072. open in new tab
  21. A. Saralegi, L. Rueda, B. Fernández-D'Arlas, I. Mondragon, A. Eceiza, M.A. Corcuera, Thermoplastic polyurethanes from renewable resources: Effect of soft segment chemical structure and molecular weight on morphology and final properties, Polym. Int. 62 (2013) 106-115, https://doi.org/10.1002/pi.4330. open in new tab
  22. E. Głowińska, J. Datta, Bio polyetherurethane composites with high content of natural ingredients: hydroxylated soybean oil based polyol, bio glycol and micro- crystalline cellulose, Cellulose 23 (2016) 581-592, https://doi.org/10.1007/ s10570-015-0825-6. open in new tab
  23. A. Prociak, G. Rokicki, J. Ryszkowska, Materiały poliuretanowe, Wydawnictwo Naukowe PWN, Warszawa, 2014.
  24. I. Yilgor, E. Yilgor, I.G. Guler, T.C. Ward, G.L. Wilkes, FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes, Polymer (Guildf) 47 (2006) 4105-4114, https://doi.org/ 10.1016/j.polymer.2006.02.027. open in new tab
  25. M. Sultan, A. Javeed, M. Uroos, M. Imran, F. Jubeen, S. Nouren, N. Saleem, I. Bibi, R. Masood, W. Ahmed, Linear and crosslinked Polyurethanes based catalysts for reduction of methylene blue, J. Hazard. Mater. 344 (2018) 210-219, https://doi. org/10.1016/j.jhazmat.2017.10.019. open in new tab
  26. P. Jutrzenka Trzebiatowska, I. Deuter, J. Datta, Cast polyurethanes obtained from reactive recovered polyol intermediates via crude glycerine decomposition process, React. Funct. Polym. 119 (2017) 20-25, https://doi.org/10.1016/j. reactfunctpolym.2017.07.009. open in new tab
  27. J.L. Ryszkowska, M. Auguścik, A. Sheikh, A.R. Boccaccini, Biodegradable poly- urethane composite scaffolds containing Bioglass® for bone tissue engineering, Compos. Sci. Technol. 70 (2010) 1894-1908, https://doi.org/10.1016/j. compscitech.2010.05.011. open in new tab
  28. J. Choi, D.S. Moon, J.U. Jang, W. Bin Yin, B. Lee, K.J. Lee, Synthesis of highly functionalized thermoplastic polyurethanes and their potential applications, Polym. (United Kingdom). 116 (2017) 287-294, https://doi.org/10.1016/j.polymer.2017. 03.083. open in new tab
  29. M.A. Corcuera, L. Rueda, A. Saralegui, M.D. Martı, Effect of diisocyanate structure on the properties and microstructure of polyurethanes based on polyols derived from renewable, Resources (2011), https://doi.org/10.1002/app. open in new tab
  30. Y. Oniki, K. Suzuki, Y. Higaki, R. Ishige, N. Ohta, A. Takahara, Molecular design of environmentally benign segmented polyurethane(urea)s: Effect of the hard segment component on the molecular aggregation states and biodegradation behavior, Polym. Chem. 4 (2013) 3735-3743, https://doi.org/10.1039/c3py00172e. open in new tab
  31. T. Calvo-Correas, A. Santamaria-Echart, A. Saralegi, L. Martin, Á. Valea, M.A. Corcuera, A. Eceiza, Thermally-responsive biopolyurethanes from a biobased diisocyanate, Eur. Polym. J. 70 (2015) 173-185, https://doi.org/10.1016/j. eurpolymj.2015.07.022. open in new tab
Verified by:
Gdańsk University of Technology

seen 194 times

Recommended for you

Meta Tags