Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables - Publication - Bridge of Knowledge

Search

Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables

Abstract

Changes in the levels of glucosinolates and their degradation products in selected Brassica vegetables due to the cooking process were investigated. The purple cauliflower was found to be the best source of aliphatic and indole glucosinolates, and it was also abundant in compounds such as sinigrin, glucoraphanin and glucobrassicin. As a result of cooking rutabaga, green cauliflower and purple cauliflower, a significant decrease was noted in total glucosinolates (6.6, 68.9 and 69.2%, respectively) compared to raw vegetables. The hydrothermal processing applied led to a decline in the sum of indoles and isothiocyanates of 48.5 and 11.0%, respectively, in green cauliflower; and of 75.8 and 42.4%, respectively, in purple cauliflower; whereas, in rutabaga it led to an increase of 142.9 and 329.4%, respectively, compared with raw vegetables.

Citations

  • 4 5

    CrossRef

  • 0

    Web of Science

  • 4 4

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 747 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Journal of Functional Foods no. 23, pages 412 - 422,
ISSN: 1756-4646
Publication year:
2016
Bibliographic description:
Kapusta-Duch J., Kusznierewicz B., Leszczyńska T., Borczak B.: Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables// Journal of Functional Foods. -Vol. 23, (2016), s.412-422
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jff.2016.03.006
Bibliography: test
  1. Abdull Razis, A. F., Bagatta, M., De Nicola, G. R., Iori, R., & Ioannides, C. (2010). Intact glucosinolates modulate hepatic cytochrome P 450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology, 277, 74-85. open in new tab
  2. Avato, P., & Argentieri, M. P. (2015). Brassicaceae: A rich source of health improving phytochemicals. Phytochemistry Reviews, 14(6), 1019-1033. open in new tab
  3. Bradshaw, J. E. (2010). Swedes and turnips. In J. E. Bradshaw (Ed.), Root and tuber crops, handbook of plant breeding (Vol. 7, pp. 245- 289). New York: Springer.
  4. Cieślik, E., Leszczyń ska, T., Filipiak-Florkiewicz, A., Sikora, E., & Pisulewski, P. M. (2007). Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chemistry, 105(3), 976-981. open in new tab
  5. Ciska, E., Verkerk, R., & Honke, J. (2009). Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3′-diindolylmethane in fermented cabbage. Journal of Agricultural and Food Chemistry, 57(6), 2334-2338. open in new tab
  6. Clarke, D. B. (2010). Glucosinolates, structures and analysis in food. Analytical Methods, 2, 310-325. open in new tab
  7. Conaway, C. C., Getahun, S. M., Liebes, L. L., Pusateri, D. J., Topham, D. K., Botero-Omary, M., & Chung, F. L. (2000). Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutrition and Cancer, 38, 168-178. open in new tab
  8. De Vos, R. H., & Blijleven, W. G. H. (1988). The effect of processing conditions on glucosinolates in cruciferous vegetables. Zeitschrift für Lebensmittel-Untersuchung und-Forschung, 187, 525- 529.
  9. Deng, Q., Zinoviadou, K. G., Galanakis, C. M., Orlien, V., Grimi, N., Vorobiev, E., Lebovka, N., & Barba, F. J. (2015). The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: Extraction, degradation, and applications. Food Engineering Reviews, 7, 357-381. open in new tab
  10. Dos Reis, L. C., De Oliveira, V. R., Hagen, M. E., Jabloń ski, A., Flôres, S. H., & de Oliveira Rios, A. (2015). Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var.
  11. Alphina F1) grown in an organic system. Food Chemistry, 172, 770-777. open in new tab
  12. Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 5-51. open in new tab
  13. Fimognari, C., & Hrelia, P. (2007). Sulforaphane as a promising molecule for fighting cancer. Mutation Research, 635, 90- 104. open in new tab
  14. Fimognari, C., Turrini, E., Ferruzzi, L., Lenzi, M., & Hrelia, P. (2012). Natural isothiocyanates: Genotoxic potential versus chemoprevention. Mutation Research, 750(2), 107-131. open in new tab
  15. Fuentes, F., Paredes-Gonzalez, X., & Kong, A.-N. T. (2015). Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: Anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Current Pharmacology Reports, 1, 179-196. open in new tab
  16. Getahun, S. M., & Chung, F. L. (1999). Conversion of glucosinolates to isothiocyanates in human after ingestion of cooked watercress. Cancer Epidemiology, Biomarkers & Prevention, 8, 447-451.
  17. Girgin, N., & El, S. N. (2015). Effects of cooking on in vitro sinigrin bioaccessibility, total phenols, antioxidant and antimutagenic activity of cauliflower (Brassica oleracea L. var. Botrytis). Journal of Food Composition and Analysis, 37, 119-127. open in new tab
  18. Gliszczyń ska-Ś wigło, A., Ciska, E., Pawlak-Lemań ska, K., Chmielewski, J., Borkowski, T., & Tyrakowska, B. (2006). Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Additives and Contaminants, 23(11), 1088-1098. open in new tab
  19. Grubb, C. D., & Abel, S. (2006). Glucosinolate metabolism and its control. Trends in Plant Science, 11, 89-100. open in new tab
  20. Hanschen, F. S., Lamy, E., Schreiner, M., & Rohn, S. (2014). Reactivity and stability of glucosinolates and their breakdown products in foods. Angewandte Chemie International Edition, 53, 11430-11450. open in new tab
  21. Herr, I., & Büchler, M. W. (2010). Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treatment Reviews, 36, 377-383. open in new tab
  22. Higdon, J. V., Delage, B., Williams, D. E., & Dashwood, R. H. (2007). Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacological Research, 5, 224-236. open in new tab
  23. Hounsome, N., Hounsome, B., Tomos, D., & Edwards-Jones, G. (2009). Changes in antioxidant compounds in white cabbage during winter storage. Postharvest Biology and Technology, 52, 173-179. open in new tab
  24. ISO:9167-1. (1992). Determination of glucosinolates content part 1: Method using high-performance liquid chromatography. open in new tab
  25. Jiao, D., Yu, M. C., Hanker, J. H., Low, S. H., & Chung, F. L. (1998). Total isothiocyanate contents in cooked vegetables frequently consumed in Singapore. Journal of Agricultural and Food Chemistry, 46, 1055-1058. open in new tab
  26. Johnson, I. T. (2002). Glucosinolates: Bioavailability and importance to health. International Journal for Vitamin and Nutrition Research, 72, 26-31. open in new tab
  27. Kapusta-Duch, J., Kopeć , A., Piątkowska, E., Borczak, B., & Leszczyń ska, T. (2012). The beneficial effects of Brassica vegetables on human health. Roczniki Pań stwowego Zakładu Higieny, 63(4), 389-395. open in new tab
  28. Kazeem, M. I., & Davies, T. C. (2016). Anti-diabetic functional foods as sources of insulin secreting, insulin sensitizing and insulin mimetic agents. Journal of Functional Foods, 18, 122- 138. open in new tab
  29. Kim, Y. S., & Milner, J. A. (2005). Targets for indole-3-carbinol in cancer prevention. Journal of Nutritional Biochemistry, 16, 65-73. open in new tab
  30. Kissen, R., Rossiter, J. T., & Bones, A. M. (2009). The "mustard oil bomb": Not so easy to assembler?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochemistry Reviews, 8, 69-86. open in new tab
  31. Korus, A., Słupski, J., Gę bczyń ski, P., & Banaś, A. (2014). Effect of preliminary processing and method of preservation on the content of glucosinolates in kale (Brassica oleracea L. var. acephala) leaves. LWT -Food Science and Technology, 59, 1003- 1008. open in new tab
  32. Kusznierewicz, B., Iori, R., Piekarska, A., Namiesnik, J., & Bartoszek, A. (2013). Convenient identification of desulfoglucosinolates on the basis of mass spectra obtained during liquid chromatography-diode array-electrospray ionisation mass spectrometry analysis: Method verification for sprouts of different Brassicaceae species extracts. Journal of Chromatography. A, 1278, 108-115. open in new tab
  33. Latté, K. P., Appel, K. E., & Lampen, A. (2011). Health benefits and possible risks of broccoli -An overview. Food and Chemical Toxicology, 49, 3287-3309. open in new tab
  34. Manchali, A., Murthy, K. N. C. H., & Patil, B. S. (2012). Crucial facts about health benefits of popular cruciferous vegetables. Journal of Functional Foods, 4(1), 94-106. open in new tab
  35. McNaughton, S. A., & Marks, G. C. (2003). Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. The British Journal of Nutrition, 90, 687- 697. open in new tab
  36. Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., & Pellegrini, N. (2008). Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. Journal of Agricultural and Food Chemistry, 56(1), 139-147. open in new tab
  37. Mithen, R. F., Dekker, M., Verkerk, R., Rabot, S., & Johnson, I. T. (2000). The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. Journal of the Science of Food and Agriculture, 80, 967-984. open in new tab
  38. Moiseeva, E. P., Heukers, R., & Manson, M. M. (2007). EGFR and Src are involved in indole-3-carbinol-induced death and cell cycle arrest of human breast cancer cells. Carcinogenesis, 28, 435- 445. open in new tab
  39. Moreno, D. A., Carvajal, M., López-Berenguer, C., & García-Viguera, C. (2006). Chemical and biological characterisation of nutraceutical compounds of broccoli. Journal of Pharmaceutical and Biomedical Analysis, 41, 1508- 1522. open in new tab
  40. Murray, M. (2006). Altered CYP expression and function in response to dietary factors: Potential roles in disease pathogenesis. Current Drug Metabolism, 7, 67-81. open in new tab
  41. Nachshon-Kedmi, M., Yannai, S., Haj, A., & Fares, F. A. (2003). open in new tab
  42. Indole-3-carbinol and 3,3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food and Chemical Toxicology, 41, 745-752. open in new tab
  43. Naczk, M., Shahidi, F., Diosady, L. L., & Rubin, L. J. (1986). Removal of glucosinolates from Midas rapeseed and mustard seed by methanol-ammonia. Canadian Institute of Food Science and Technology Journal, 19(2), 75-77. open in new tab
  44. Nho, C. W., & Jeffery, E. (2001). The synergistic upregulation of phase II detoxification enzymes by glucosinolate breakdown products in cruciferous vegetables. Toxicology and Applied Pharmacology, 174, 146-152. open in new tab
  45. Palermo, M., Pellegrini, N., & Fogliano, V. (2014). The effect of cooking on the phytochemical content of vegetables. Journal of the Science of Food and Agriculture, 94, 1057-1070. open in new tab
  46. Pappa, G., Lichtenberg, M., Iori, R., Barillari, J., Bartsch, H., & Gerhauser, C. (2006). Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutation Research, 599, 76-87. open in new tab
  47. Pedras, M. S. C., & Yaya, E. E. (2010). Phytoalexins from Brassicaceae: News from the front. Phytochemistry, 71, 1191- 1197. open in new tab
  48. Piekarska, A., Kołodziejski, D., Pilipczuk, T., Bodnar, M., Konieczka, P., Kusznierewicz, B., Hanschen, F. S., Schreiner, M., Cyprys, J., Groszewska, M., Namieśnik, J., & Bartoszek, A. (2014). The influence of selenium addition during germination of Brassica seeds on health-promoting potential of sprouts. International Journal of Nutrition and Food Sciences, 65(6), 692-702. open in new tab
  49. Pilipczuk, T., Kusznierewicz, B., Namieśnik, J., & Bartoszek, A. (2015). Simultaneous determination of indolic compounds in plant extracts by solid-phase extraction and high- performance liquid chromatography with UV and fluorescence detection. Food Analytical Methods, 8(9), 2169- 2177. open in new tab
  50. Rahman, K. W., Li, Y., Wang, Z., Sarkar, S. H., & Sarkar, F. H. (2006). Gene expression profiling revealed survivin as a target of 3,3′-diindolylmethaneinduced cell growth inhibition and apoptosis in breast cancer cells. Cancer Research, 66, 4952- 4960. open in new tab
  51. Roqué-Sala, N. (2005). Thermal breakdown of glucosinolates in Brussels sprouts. Modelling and validation in a canning process (M.Sc. Thesis). Wageningen, The Netherlands: Wageningen University.
  52. Rungapamestry, V., Duncan, A. J., Fuller, Z., & Ratcliffe, B. (2006). Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. Journal of Agricultural and Food Chemistry, 54(20), 7628-7634. open in new tab
  53. Rungapamestry, V., Duncan, A. J., Fuller, Z., & Ratcliffe, B. (2007). Effect of cooking Brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proceedings of the Nutrition Society, 66, 69-81. open in new tab
  54. Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects -A review. Journal of Functional Foods, 18, 820-897. open in new tab
  55. Shahidi, F., & Gabon, J.-E. (1989). Effect of methanol-ammonia- water treatment on the concentration of individual glucosinolates of canola. Journal of Food Science, 54, 1306- 1309. open in new tab
  56. Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K. K., & Talalay, P. (1998). Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiology, Biomarkers & Prevention, 7, 1091-1100.
  57. Sones, K., Heaney, R. K., & Fenwick, G. R. (1984). An estimate of the mean daily intake of glucosinolates from cruciferous vegetables in the UK. Journal of the Science of Food and Agriculture, 35, 712-720. open in new tab
  58. Song, L., & Thornalley, P. J. (2007). Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food and Chemical Toxicology, 45(2), 216-224. open in new tab
  59. Sosiń ska, E. (2005). Loss of glucosinolates during domestic cooking of Brussels sprouts. Project report. Wageningen, The Netherlands: Wageningen University.
  60. Sosiń ska, E., & Obiedziń ski, M. W. (2007). Badania nad bioaktywnymi glukozynolanami w wybranych odmianach warzyw krzyż owych techniką HPLC. Food Science Technology Quality, 5(54), 129-136 (in Polish).
  61. Sosiń ska, E., & Obiedziń ski, M. W. (2011). Effect of processing on the content of glucobrassicin and its degradation products in broccoli and cauliflower. Food Control, 22(8), 1348-1356. open in new tab
  62. Souli, E., Machluf, M., Morgenstern, A., Sabo, E., & Yannai, S. (2008). Indole-3-carbinol (I3C) exhibits inhibitory and preventive effects on prostate tumors in mice. Food and Chemical Toxicology, 46, 863-870. open in new tab
  63. Ś miechowska, A., Bartoszek, A., & Namieśnik, J. (2008). Cancer chemopreventive agents: Glucosinolates and their decomposition products in white cabbage (Brassica oleracea var. capitata). Postępy Higieny i Medycyny Doświadczalnej, 62, 125-140.
  64. Tang, L., Paonessa, J. D., Zhang, Y., Ambrosone, C. B., & McCann, S. E. (2013). Total isothiocyanate yield from raw cruciferous vegetables commonly consumed in the United States. Journal of Functional Foods, 5(4), 1996-2001. open in new tab
  65. Tiwari, U., Sheehy, E., Rai, D., Gaffney, M., Evans, P., & Cummins, E. (2015). Quantitative human exposure model to assess the level of glucosinolates upon thermal processing of cruciferous vegetables. LWT -Food Science and Technology, 63, 253-261. open in new tab
  66. Traka, M., & Mithen, R. (2009). Glucosinolates, isothiocyanates and human health. Phytochemistry Reviews, 8, 269-282. open in new tab
  67. Verkerk, R., & Dekker, M. (2004). Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. Var. Capitata f. rubra DC.) after various microwave treatments. Journal of Agricultural and Food Chemistry, 52, 7318-7323. open in new tab
  68. Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., De Schrijver, R., Hansen, M., Gerhauser, C., Mithen, R., & Dekker, M. (2009). Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition & Food Research, 53(Suppl. 2), S219. open in new tab
  69. Volden, J., Bengtsson, B. G., & Wicklund, T. (2009). Glucosinolates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. Botrytis); effect of long-term freezer storage. Food Chemistry, 112, 967-976. open in new tab
  70. Wu, H., Lin, S., & Chen, Y. (2005). Inhibition of cell proliferation and in vitro markers of angiogenesis by indole-3-carbinol, a major indole metabolite present in cruciferous vegetables. Journal of Agricultural and Food Chemistry, 53, 5164- 5169. open in new tab
  71. Yuan, G. F., Sun, B., Yuan, J., & Wang, Q. M. (2009). Effects of different cooking methods on health-promoting compounds of broccoli. Journal of Zhejiang University. Science. B, 10(8), 580- 588. open in new tab
  72. Zhang, Y., & Talalay, P. (1998). Mechanism of differentia potencies of isothiocyanates as inducers of anticarcinogenic chase 2 enzymes. Cancer Research, 58, 4632-4639.
  73. Zhang, Y., Wade, K. L., Prestera, T., & Talalay, P. (1996). Quantitative determination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1,2-benzenedithiol. Analytical Biochemistry, 239, 160-167. open in new tab
Verified by:
Gdańsk University of Technology

seen 137 times

Recommended for you

Meta Tags