Effect of sintering temperature on electrochemical performance of porous SrTi1-xFexO3-δ (x = 0.35, 0.5, 0.7) oxygen electrodes for solid oxide cells - Publication - Bridge of Knowledge

Search

Effect of sintering temperature on electrochemical performance of porous SrTi1-xFexO3-δ (x = 0.35, 0.5, 0.7) oxygen electrodes for solid oxide cells

Abstract

This work evaluates the effects of the sintering temperature (800 °C, 900 °C, 1000 °C) of SrTi1-xFexO3-δ (x = 0.35, 0.5, 0.7) porous electrodes on their electrochemical performance as potential oxygen electrode materials of solid oxide cells. The materials were prepared by a solid-state reaction method and revealed the expected cubic perovskite structure. After milling, the powders were characterised by a sub-micrometre particle size with high sinter-activity. It was shown that the lowest area specific resistance was achieved after sintering SrTi0.65Fe0.35O3 electrodes at 1000 °C, and SrTi0.5Fe0.5O3 and SrTi0.30Fe0.70O3 electrodes at 800 °C, which can be considered to be a relatively low temperature. In general, EIS measurements showed that increasing the Fe content results in lowered electrode polarisation and a decrease of the series resistance. Even though the studied materials have much lower total conductivities than state-of-the-art electrode materials (e.g. (La,Sr)(Co,Fe)O3), the polarisation resistances obtained in this work can be considered low.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 50 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF SOLID STATE ELECTROCHEMISTRY no. 24, pages 873 - 882,
ISSN: 1432-8488
Language:
English
Publication year:
2020
Bibliographic description:
Mroziński A., Molin S., Jasiński P.: Effect of sintering temperature on electrochemical performance of porous SrTi1-xFexO3-δ (x = 0.35, 0.5, 0.7) oxygen electrodes for solid oxide cells// JOURNAL OF SOLID STATE ELECTROCHEMISTRY -Vol. 24, (2020), s.873-882
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10008-020-04534-0
Bibliography: test
  1. Baharuddin NA, Muchtar A, Somalu MR (2017) Short review on cobalt-free cathodes for solid oxide fuel cells. Int J Hydrog Energy 42:9149-9155 open in new tab
  2. Rheinheimer W, Phuah XL, Wang H et al (2019) The role of point defects and defect gradients in flash sintering of perovskite oxides. Acta Mater 165:398-408 open in new tab
  3. Rolle A, Mohamed HAA, Huo D et al (2016) Ca 3 Co 4 O 9 + δ , a growing potential SOFC cathode material: impact of the layer com- position and thickness on the electrochemical properties. Solid State Ionics 294:21-30 open in new tab
  4. Rolle A, Boulfrad S, Nagasawa K et al (2011) Optimisation of the solid oxide fuel cell (SOFC) cathode material Ca 3Co4O9-δ. J Power Sources 196:7328-7332 open in new tab
  5. Perry NH, Kim JJ, Tuller HL (2018) Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxa- tion and impedance spectroscopy: Sr(Ti,Fe)O 3-x thin film case study. Sci Technol Adv Mater 19(1):130-141 open in new tab
  6. Szymczewska D, Karczewski J, Chrzan A, Jasinski P (2017) CGO as a barrier layer between LSCF electrodes and YSZ electrolyte fabricated by spray pyrolysis for solid oxide fuel cells. Solid State Ionics 302:113-117 open in new tab
  7. Tsipis EV, Kharton VV (2011) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III Recent trends and selected methodological aspects. J Solid State Electrochem 15:1007-1040 open in new tab
  8. Zhang Y, Knibbe R, Sunarso J et al (2017) Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C. Adv Mater 29:1-33 open in new tab
  9. Zhang WW, Chen M, Povoden-Karadeniz E, Hendriksen PV (2016) Thermodynamic modeling of the Sr-Co-Fe-O system. Solid State Ionics 292:88-97 open in new tab
  10. Muhammed Ali SA, Anwar M, Mahmud LS et al (2019) Influence of current collecting and functional layer thickness on the perfor- mance stability of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ -Ce 0.8 Sm 0.2 O 1.9 composite cathode. J Solid State Electrochem 23:1155-1164 open in new tab
  11. Jiang SP (2019) Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells -a review. Int J Hydrog Energy 44:7448-7493 open in new tab
  12. Kivi I, Aruväli J, Kirsimäe K et al (2017) Influence of humidified synthetic air feeding conditions on the stoichiometry of (La 1- x Sr x ) y CoO 3−δ and La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ cathodes under applied potential measured by electrochemical in situ high-temperature XRD method. J Solid State Electrochem 21:361-369 open in new tab
  13. Kogler S, Nenning A, Rupp GM et al (2015) Comparison of elec- trochemical properties of La0.6Sr0.4FeO3.δ; thin film electrodes: oxidizing vs. reducing conditions. J Electrochem Soc 162:F317- F326 open in new tab
  14. Muhammed Ali SA, Anwar M, Baharuddin NA et al (2018) Enhanced electrochemical performance of LSCF cathode through selection of optimum fabrication parameters. J Solid State Electrochem 22:263-273 open in new tab
  15. Garali M, Kahlaoui M, Mohammed B et al (2019) Synthesis, char- acterization and electrochemical properties of La2-xEuxNiO4+Δ open in new tab
  16. Ruddlesden-Popper-type layered nickelates as cathode materials for SOFC applications. Int J Hydrog Energy 44:11020-11032
  17. Nicollet C, Flura A, Vibhu V et al (2016) Preparation and charac- terization of Pr2NiO4+δ infiltrated into Gd-doped ceria as SOFC cathode. J Solid State Electrochem 20:2071-2078 open in new tab
  18. Niemczyk A, Olszewska A, Du Z et al (2018) Assessment of lay- ered La 2-x (Sr,Ba) x CuO 4-Δ oxides as potential cathode mate- rials for SOFCs. Int J Hydrog Energy 43:15492-15504 open in new tab
  19. Philippeau B, Mauvy F, Nicollet C et al (2015) Oxygen reduction r e a c t i o n i n P r 2 N i O 4 + δ / C e 0 . 9 G d 0 . 1 O 1 . 9 5 a n d La0.6Sr0.4Co0.2Fe0.8O3−δ/La0.8Sr0.2Ga0.8Mg0.2O2.80 half cells: an electrochemical study. J Solid State Electrochem 19:871- 882 open in new tab
  20. Zhu L, Hong T, Xu C, Cheng J (2019) A novel dual phase BaCe0.5Fe0.5O3-Δ cathode with high oxygen electrocatalysis ac- tivity for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 44:15400-15408 open in new tab
  21. Gao Z, Ding X, Ding D et al (2018) Infiltrated Pr2NiO4 as prom- ising bi-electrode for symmetrical solid oxide fuel cells. Int J Hydrog Energy 43:8953-8961 open in new tab
  22. Li H, Sun LP, Feng Q et al (2017) Investigation of Pr 2 NiMnO 6 - Ce 0.9 Gd 0.1 O 1.95 composite cathode for intermediate- temperature solid oxide fuel cells. J Solid State Electrochem 21: 273-280 open in new tab
  23. Yoo C-Y, Bouwmeester HJM (2012) Oxygen surface exchange kinetics of SrTi1−xFexO3−δ mixed conducting oxides. Phys Chem Chem Phys 14:11759 open in new tab
  24. Perry NH, Ishihara T (2016) Roles of bulk and surface chemistry in the oxygen exchange kinetics and related properties of mixed conducting perovskite oxide electrodes. Materials (Basel) 9:1-24 open in new tab
  25. Jung W, Tuller HL (2008) Investigation of cathode behavior of model thin-film SrTi[sub 1−x]Fe[sub x]O[sub 3−δ] (x=0.35 and 0.5) mixed ionic-electronic conducting electrodes. J Electrochem Soc 155:B1194-B1201 open in new tab
  26. Zhang SL, Wang H, Lu MY et al (2018) Cobalt-substituted SrTi0.3Fe0.7O3?d: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells. Energy Environ Sci 11:1870-1970 open in new tab
  27. Yao C, Zhang H, Liu X et al (2019) A niobium and tungsten co- doped SrFeO 3-δ perovskite as cathode for intermediate tempera- ture solid oxide fuel cells. Ceram Int 45:7351-7358 open in new tab
  28. Fan L, Zhu B, Su PC, He C (2018) Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, chal- lenges and opportunities. Nano Energy 45:148-176 open in new tab
  29. Jung W, Tuller HL (2009) Impedance study of SrTi1-xFexO3-δ (x = 0.05 to 0.80) mixed ionic-electronic conducting model cathode. Solid State Ionics 180:843-847 open in new tab
  30. Oliveira Silva R, Malzbender J, Schulze-Küppers F et al (2017) Mechanical properties and lifetime predictions of dense SrTi1- xFexO3-δ(x = 0.25, 0.35, 0.5). J Eur Ceram Soc 37:2629-2636
  31. Liu Y, Baumann S, Schulze-Küppers F et al (2018) Co and Fe co- doping influence on functional properties of SrTiO3for use as oxy- gen transport membranes. J Eur Ceram Soc 38:5058-5066 open in new tab
  32. Hayden BE, Rogers FK (2018) Oxygen reduction and oxygen evo- lution on SrTi1 − xFexO3 − y (STFO) perovskite electrocatalysts. J Electroanal Chem 819:275-282 open in new tab
  33. Song JL, Guo X (2015) SrTi<inf>0.65</inf>Fe<inf>0.35</ inf>O<inf>3</inf> nanofibers for oxygen sensing. Solid State Ionics 278:26-31
  34. Sarin N, Mishra M, Gupta G et al (2018) Elucidating iron doping induced n-to p-characteristics of strontium titanate based ethanol sensors. Curr Appl Phys 18:246-253 open in new tab
  35. Zhu T, Fowler DE, Poeppelmeier KR et al (2016) Hydrogen oxida- tion mechanisms on perovskite solid oxide fuel cell anodes. J Electrochem Soc 163:F952-F961 open in new tab
  36. Łącz A, Drożdż E (2019) Porous Y and Cr -doped SrTiO 3 mate- rials -electrical and redox properties. J Solid State Electrochem 23:2989-2997 open in new tab
  37. Nenning A, Volgger L, Miller E et al (2017) The electrochemical properties of Sr(Ti,Fe)O 3-δ for anodes in solid oxide fuel cells. J Electrochem Soc 164:F364-F371 open in new tab
  38. Chrzan A, Karczewski J, Gazda M et al (2015) Investigation of thin perovskite layers between cathode and doped ceria used as buffer layer in solid oxide fuel cells. J Solid State Electrochem 19:1807- 1815 open in new tab
  39. Zhang S-L, Cox D, Yang H et al (2019) High stability SrTi 1−x Fe x O 3−δ electrodes for oxygen reduction and oxygen evolution reac- tions. J Mater Chem A:21447-21458 open in new tab
  40. Cao Z, Fan L, Zhang G et al (2019) Titanium-substituted ferrite perovskite: an excellent sulfur and coking tolerant anode catalyst for SOFCs. Catal Today 330:217-221 open in new tab
  41. Molin S, Lewandowska-Iwaniak W, Kusz B et al (2012) Structural and electrical properties of Sr(Ti, Fe)O 3-δ materials for SOFC cath- odes. J Electroceram 28:80-87 open in new tab
  42. Mroziński A, Molin S, Karczewski J et al (2019) Electrochemical properties of porous Sr 0.86 Ti 0.65 Fe 0.35 O 3 oxygen electrodes in solid oxide cells: impedance study of symmetrical electrodes. Int J Hydrog Energy 44:1827-1838 open in new tab
  43. Çelikbilek Ö, Jauffres D, Dessemond L et al (2016) A coupled experimental/numerical approach for tuning high-performing SOFC-cathode. ECS Trans 72:81-92 open in new tab
  44. Yang G, Su C, Chen Y et al (2015) Cobalt-free SrFe<inf>0.9</ inf>Ti<inf>0.1</inf>O<inf>3-δ</inf> as a high-performance elec- trode material for oxygen reduction reaction on doped ceria elec- trolyte with favorable CO<inf>2</inf> tolerance. J Eur Ceram Soc 35:2531-2539
  45. Filatova EO, Egorova YV, Galdina KA et al (2017) Effect of Fe content on atomic and electronic structure of complex oxides Sr(Ti, Fe)O3 − δ. Solid State Ionics 308:27-33 open in new tab
  46. Mroziński A, Molin S, Karczewski J et al (2019) The influence of iron doping on performance of SrTi 1-x Fe x O 3-δ perovskite oxygen electrode for SOFC. ECS Trans 91:1299-1307 open in new tab
  47. Wan TH, Saccoccio M, Chen C, Ciucci F (2015) Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim Acta 184:483-499 open in new tab
  48. Ciucci F, Chen C (2015) Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach. Electrochim Acta 167:439-454 open in new tab
  49. Zheng K, Świerczek K, Polfus JM et al (2015) Carbon deposition and sulfur poisoning in SrFe<inf>0.75</inf>Mo<inf>0.25</ inf>O<inf>3-δ</inf> and SrFe<inf>0.5</inf>Mn<inf>0.25</ inf>Mo<inf>0.25</inf>O<inf>3-δ</inf> electrode materials for symmetrical SOFCs. J Electrochem Soc 162:F1078-F1087
  50. Molin S, Gazda M, Jasinski P (2009) Conductivity improvement of Ce 0.8 Gd 0.2 O 1.9 solid electrolyte. J Rare Earths 27:655-660 open in new tab
  51. Wang S, Kobayashi T, Dokiya M, Hashimoto T (2000) Electrical and ionic conductivity of Gd-doped ceria. J Electrochem Soc 147: 3606 open in new tab
  52. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chem- ical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63-94 open in new tab
  53. Hashim SS, Liang F, Zhou W, Sunarso J (2019) Cobalt-free perov- skite cathodes for solid oxide fuel cells. ChemElectroChem:3549- 3569 open in new tab
  54. Riegraf M, Costa R, Schiller G et al (2019) Electrochemical imped- ance analysis of symmetrical Ni/gadolinium-doped ceria (CGO10) electrodes in electrolyte-supported solid oxide cells. J Electrochem Soc 166:F865-F872 open in new tab
  55. Boukamp BA, Rolle A (2018) Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC elec- trodes. Solid State Ionics 314:103-111 open in new tab
  56. Clematis D, Barbucci A, Presto S et al (2019) Electrocatalytic ac- tivity of perovskite-based cathodes for solid oxide fuel cells. Int J Hydrog Energy 44:6212-6222 open in new tab
  57. Dogdibegovic E, Guan W, Yan J et al (2016) Activity and stability of (Pr1-xNdx)2NiO4 as cathodes for solid oxide fuel cells: II. Electrochemical performance and performance durability. J Electrochem Soc 163:F1344-F1349 open in new tab
  58. Merkle R, Maier J (2008) How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew Chem Int Ed 47:3874-3894 open in new tab
  59. Rothschild A, Menesklou W, Tuller HL, Ivers-Tiffée E (2006) Electronic structure, defect chemistry, and transport properties of SrTi 1-xFe xO 3-y solid solutions. Chem Mater 18:3651-3659 open in new tab
  60. Jung W, Tuller HL (2009) Impedance study of SrTi(1-x)Fe(x)O(3- delta) (x=0.05 to 0.80) mixed ionic-electronic conducting model cathode. Solid State Ionics 180:843-847 open in new tab
  61. Metlenko V, Jung W, Bishop SR, Tuller HL, de Souza RA (2016) Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi1-: YFeyO3-δ. Phys Chem Chem Phys 18(42):29495- 29505 open in new tab
  62. Samson A, Sogaard M, Knibbe R, Bonanos N (2011) High perfor- mance cathodes for solid oxide fuel cells prepared by infiltration of La[sub 0.6]Sr[sub 0.4]CoO[sub 3 -delta ] into Gd-doped ceria. J Electrochem Soc 158:B650-B659 open in new tab
  63. Hjalmarsson P, Søgaard M, Mogensen M (2008) Electrochemical performance and degradation of (La0.6Sr0.4)0.99CoO3 -δ as po- rous SOFC-cathode. Solid State Ionics 179:1422-1426 open in new tab
  64. Ju J, Xie Y, Wang Z et al (2016) Electrical performance of nano- structured La0.6Sr0.4Co0.2Fe0.8O3-δ impregnated onto yttria- stabilized zirconia backbone. J Electrochem Soc 163:F393-F400 open in new tab
  65. Cheng Y, Yu AS, Li X et al (2016) Preparation of SOFC cathodes by infiltration into LSF-YSZ composite scaffolds. J Electrochem Soc 163:F54-F58 open in new tab
  66. Publisher's note Springer Nature remains neutral with regard to jurisdic- tional claims in published maps and institutional affiliations. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 169 times

Recommended for you

Meta Tags