Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents - Publication - MOST Wiedzy


Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents


The study is devoted to the electrochemical detection of trace explosives on boron-doped diamond/graphene nanowall electrodes (B:DGNW). The electrodes were fabricated in a one-step growth process using chemical vapour deposition without any additional modifications. The electrochemical investigations were focused on the determination of the important nitroaromatic explosive compounds, 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitroanisole (TNA). The distinct reduction peaks of both studied compounds were observed regardless of the pH value of the solution. The reduction peak currents were linearly related to the concentration of TNT and TNA in the range from 0.05–15 ppm. Nevertheless, two various linear trends were observed, attributed respectively to the adsorption processes at low concentrations up to the diffusional character of detection for larger contamination levels. The limit of detection of TNT and TNA is equal to 73 ppb and 270 ppb, respectively. Moreover, the proposed detection strategy has been applied under real conditions with a significant concentration of interfering compounds – in landfill leachates. The proposed bare B:DGNW electrodes were revealed to have a high electroactive area towards the voltammetric determination of various nitroaromatic compounds with a high rate of repeatability, thus appearing to be an attractive nanocarbon surface for further applications.


  • 5


  • 3

    Web of Science

  • 4



artykuły w czasopismach
Published in:
ISSN: 0304-3894
Publication year:
Bibliographic description:
Dettlaff A., Jakóbczyk P., Ficek M., Wilk B., Szala M., Wojtas J., Ossowski T., Bogdanowicz R.: Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents// JOURNAL OF HAZARDOUS MATERIALS -Vol. 387, (2020), s.1-9
Digital Object Identifier (open in new tab) 10.1016/j.jhazmat.2019.121672
Bibliography: test
  1. A. for T.S, Registry, D., 1995. Toxicological Profile for 2,4,6-Trinitrotoluene. U.S. Dep. Heal. Hum. Serv.https://doi.org/10.1201/9781420061888_ch21. open in new tab
  2. Akhgari, F., Fattahi, H., Oskoei, Y.M., 2015. Recent Advances in Nanomaterial-Based Sensors for Detection of Trace Nitroaromatic Explosives. Elsevier B.V.https://doi. org/10.1016/j.snb.2015.06.146. open in new tab
  3. Avaz, S., Roy, R.B., Mokkapati, V.R.S.S., Bozkurt, A., Pandit, S., Mijakovic, I., Menceloglu, Y.Z., 2017. Graphene based nanosensor for aqueous phase detection of nitroaro- matics. RSC Adv. 7, 25519-25527. https://doi.org/10.1039/c7ra03860g. open in new tab
  4. Babaee, S., Beiraghi, A., 2010. Micellar extraction and high performance liquid chro- matography-ultra violet determination of some explosives in water samples. Anal. Chim. Acta 662, 9-13. https://doi.org/10.1016/j.aca.2009.12.032. open in new tab
  5. Bart, J.C., Judd, L.L., Hoffman, K.E., Wilkins, A.M., Kusterbeck, A.W., 1997. Application of a portable immunosensor to detect the explosives TNT and RDX in groundwater samples. Environ. Sci. Technol. 31, 1505-1511. https://doi.org/10.1021/es960777l. open in new tab
  6. Bratin, K., Kissinger, P.T., Briner, R.C., Bruntlett, C.S., 1981. Determination of nitro aromatic, nitramine, and nitrate ester explosive compounds in explosive mixtures and gunshot residue by liquid chromatography and reductive electrochemical detection. Anal. Chim. Acta 130, 295-311. https://doi.org/10.1016/S0003-2670(01)93007-7. open in new tab
  7. Casey, M.C., Cliffel, D.E., 2015. Surface adsorption and electrochemical reduction of 2,4,6-trinitrotoluene on vanadium dioxide. Anal. Chem. 87, 334-337. https://doi. org/10.1021/ac503753g. open in new tab
  8. Chua, C.K., Pumera, M., 2011. Influence of methyl substituent position on redox prop- erties of nitroaromatics related to 2,4,6-trinitrotoluene. Electroanalysis 23, 2350-2356. https://doi.org/10.1002/elan.201100359. open in new tab
  9. Chua, C.K., Pumera, M., Rulíšek, L., 2012. Reduction pathways of 2,4,6-trinitrotoluene: an electrochemical and theoretical study. J. Phys. Chem. C 116, 4243-4251. https:// doi.org/10.1021/jp209631x. open in new tab
  10. de Sanoit, J., Vanhove, E., Mailley, P., Bergonzo, P., 2009. Electrochemical diamond sensors for TNT detection in water. Electrochim. Acta 54, 5688-5693. https://doi. org/10.1016/j.electacta.2009.05.013. open in new tab
  11. El Bouabi, Y., Farahi, A., Labjar, N., El Hajjaji, S., Bakasse, M., El Mhammedi, M.A., 2016. Square wave voltammetric determination of paracetamol at chitosan modified carbon paste electrode: application in natural water samples, commercial tablets and human urines. Mater. Sci. Eng. C. 58, 70-77. https://doi.org/10.1016/j.msec.2015.08.014. Ficek, M., Bogdanowicz, R., Ryl, J., 2015. Nanocrystalline CVD Diamond coatings on fused silica optical fibres: optical properties study. Acta Phys. Pol. A. 127, 868-873. https://doi.org/10.12693/APhysPolA.127.868. open in new tab
  12. Filanovsky, B., Markovsky, B., Bourenko, T., Perkas, N., Persky, R., Gedanken, A., Aurbach, D., 2007. Carbon electrodes modified with TiO2/metal nanoparticles and their application to the detection of trinitrotoluene. Adv. Funct. Mater. 17, 1487-1492. https://doi.org/10.1002/adfm.200600714. open in new tab
  13. Furton, K.G., Caraballo, N.I., Cerreta, M.M., Holness, H.K., 2015. Advances in the use of odour as forensic evidence through optimizing and standardizing instruments and canines. Philos. Trans. R. Soc. B Biol. Sci. 370. https://doi.org/10.1098/rstb.2014. 0262. open in new tab
  14. Gao, Y.S., Xu, J.K., Lu, L.M., Wu, L.P., Zhang, K.X., Nie, T., Zhu, X.F., Wu, Y., 2014. Overoxidized polypyrrole/graphene nanocomposite with good electrochemical per- formance as novel electrode material for the detection of adenine and guanine. Biosens. Bioelectron. 62, 261-267. https://doi.org/10.1016/j.bios.2014.06.044. open in new tab
  15. Gaurav, A.K., Malik, P.K.Rai, 2009. Development of a new SPME-HPLC-UV method for the analysis of nitro explosives on reverse phase amide column and application to analysis of aqueous samples. J. Hazard. Mater. 172, 1652-1658. https://doi.org/10. 1016/j.jhazmat.2009.08.039. open in new tab
  16. Goh, M.S., Pumera, M., 2011. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and mul- tilayer graphene nanoribbons and graphite microparticles. Anal. Bioanal. Chem. 399, 127-131. https://doi.org/10.1007/s00216-010-4338-8. open in new tab
  17. Grechishkin, V.S., Sinyavskii, N.Y., 2008. New technologies: nuclear quadrupole re- sonance as an explosive and narcotic detection technique. Uspekhi Fiz. Nauk. 167, 413. https://doi.org/10.3367/ufnr.0167.199704d.0413. open in new tab
  18. Guo, S., Wen, D., Zhai, Y., Dong, S., Wang, E., 2010. Platinum nanoparticle ensemble-on- electrode material for electrochemical rapid synthesis, and used as new graphene hybrid nanosheet: one-pot, sensing. ACS Nano 4, 3959-3968. open in new tab
  19. Harvey, S.D., Clauss, T.R.W., 1996. Rapid on-line chromatographic determination of trace-level munitions in aqueous samples. J. Chromatogr. A 753, 81-89. https://doi. org/10.1016/S0021-9673(96)00524-9. open in new tab
  20. Hundal, L.S., Singh, J., Bier, E.L., Shea, P.J., Comfort, S.D., Powers, W.L., 1997. Removal of TNT and RDX from water and soil using iron metal. Environ. Pollut. 97, 55-64. open in new tab
  21. Jamil, A.K.M., Izake, E.L., Sivanesan, A., Fredericks, P.M., 2015. Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy. Talanta 134, 732-738. https://doi.org/10.1016/j.talanta.2014.12.022. open in new tab
  22. Junqueira, R.C., De Araujo, W.R., Salles, M.O., Paix, T.R.L.C., 2013. Flow injection analysis of picric acid explosive using a copper electrode as electrochemical detector. Talanta 104, 162-168. https://doi.org/10.1016/j.talanta.2012.11.036. open in new tab
  23. Lee, M.R., Chang, S.C., Kao, T.S., Tang, C.P., 1934. Studies of limit of detection on 2,4,6- Trinitrotoluene (TNT) by mss spectrometry. J. Res. Bur. Stand. (1934) 93 (1988), 428-430. https://doi.org/10.1038/159159b0. open in new tab
  24. López-López, M., García-Ruiz, C., 2014. Infrared and Raman spectroscopy techniques applied to identification of explosives. TrAC -Trends Anal. Chem. 54, 36-44. https:// doi.org/10.1016/j.trac.2013.10.011. open in new tab
  25. Mozjoukhine, G.V., 2000. The two-frequency nuclear quadrupole resonance for ex- plosives detection. Appl. Magn. Reson. 18, 527-535. https://doi.org/10.1007/ BF03162299. open in new tab
  26. Muhammad, A., Yusof, N.A., Hajian, R., Abdullah, J., 2016. Construction of an electro- chemical sensor based on carbon nanotubes/gold nanoparticles for trace determi- nation of amoxicillin in bovine milk. Sensors (Switzerland) 16, 1-13. https://doi.org/ 10.3390/s16010056. open in new tab
  27. Narang, U., Gauger, P.R., Ligler, F.S., 1997. A displacement flow immunosensor for ex- plosive detection using microcapillaries. Anal. Chem. 69, 2779-2785. https://doi. org/10.1021/ac970153d. open in new tab
  28. O'Mahony, A.M., Wang, J., 2013a. Nanomaterial-based electrochemical detection of ex- plosives: a review of recent developments. Anal. Methods 5, 4296-4309. https://doi. org/10.1039/c3ay40636a. open in new tab
  29. O'Mahony, A.M., Wang, J., 2013b. Nanomaterial-based electrochemical detection of ex- plosives: a review of recent developments. Anal. Methods 5, 4296-4309. https://doi. org/10.1039/c3ay40636a. open in new tab
  30. Oehrle, S.A., 2003. Analysis of nitramine and nitroaromatic explosives by capillary electrophoresis. J. Chromatogr. A 745, 233-237. https://doi.org/10.1016/0021- 9673(96)00388-3. open in new tab
  31. Pittman, T.L., Thomson, B., Miao, W., 2009. Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence. Anal. Chim. Acta 632, 197-202. https://doi.org/10.1016/j.aca.2008.11.032. open in new tab
  32. Pon Saravanan, N., Venugopalan, S., Senthilkumar, N., Santhosh, P., Kavita, B., Gurumallesh Prabu, H., 2006. Voltammetric determination of nitroaromatic and ni- tramine explosives contamination in soil. Talanta 69, 656-662. https://doi.org/10. 1016/j.talanta.2005.10.041. open in new tab
  33. Protection, U.S.E., Epa, A., Facilities, F., Office, R., 2017. Technical fact sheet-2,4,6- trinitrotoluene (TNT), United States. Environ. Prot. Agency. EPA 505-Fhttps://doi. org/10.1089/jpm.2012.0112. open in new tab
  34. Rabbany, S.Y., Lane, W.J., Marganski, W.A., Kusterbeck, A.W., Ligler, F.S., 2000. Trace detection of explosives using a membrane-based displacement immunoassay. J. Immunol. Methods 246, 69-77. open in new tab
  35. Riskin, M., Tel-Vered, R., Lioubashevski, O., Willner, I., 2009. Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au na- noparticles composite. J. Am. Chem. Soc. 131, 7368-7378. https://doi.org/10.1021/ ja9001212. open in new tab
  36. Ro, K.S., Venugopal, A., Adrian, D.D., Constant, D., Qaisi, K., Valsaraj, K.T., Thibodeaux, L.J., Roy, D., 1996. Solubility of 2,4,6-trinitrotoluene (TNT) in water. J. Chem. Eng. Data 41, 758-761. https://doi.org/10.1021/je950322w. open in new tab
  37. Roddey, H., Development, C., 2011. New Carbon Nanotube Sensor Can Detect Tiny Traces of Explosives. pp. 9-10.
  38. Ryl, J., Burczyk, L., Bogdanowicz, R., Sobaszek, M., Darowicki, K., 2016. Study on surface termination of boron-doped diamond electrodes under anodic polarization in H2SO4 by means of dynamic impedance technique. Carbon N. Y. 96, 1093-1105. open in new tab
  39. Saǧlam, Ş., Üzer, A., Erçaǧ, E., Apak, R., 2018. Electrochemical determination of TNT, DNT, RDX, and HMX with gold nanoparticles/poly(carbazole-aniline) film-modified glassy carbon sensor electrodes imprinted for molecular recognition of nitroaromatics and nitramines. Anal. Chem. 90, 7364-7370. https://doi.org/10.1021/acs.analchem. 8b00715. open in new tab
  40. Sankaran, K.J., Ficek, M., Kunuku, S., Panda, K., Yeh, C.J., Park, J.Y., Sawczak, M., Michałowski, P.P., Leou, K.C., Bogdanowicz, R., Lin, I.N., Haenen, K., 2018. Self- organized multi-layered graphene-boron-doped diamond hybrid nanowalls for high- performance electron emission devices. Nanoscale 10, 1345-1355. https://doi.org/ 10.1039/c7nr06774g. open in new tab
  41. Šarlauskas, J., 2010. Polynitrobenzenes containing alkoxy and alkylenedioxy groups: potential hems and precursors of new energetic materials. Cent. Eur. J. Energy Mater. 7, 313-324.
  42. Schnorr, J.M., Van Der Zwaag, D., Walish, J.J., Weizmann, Y., Swager, T.M., 2013. Sensory arrays of covalently functionalized single-walled carbon nanotubes for ex- plosive detection. Adv. Funct. Mater. 23, 5285-5291. https://doi.org/10.1002/adfm. 201300131. open in new tab
  43. Sekhar, P.K., Brosha, E.L., Mukundan, R., Linker, K.L., Brusseau, C., Garzon, F.H., 2011. Trace detection and discrimination of explosives using electrochemical potentio- metric gas sensors. J. Hazard. Mater. 190, 125-132. https://doi.org/10.1016/j. jhazmat.2011.03.007. open in new tab
  44. Shankaran, D.R., Gobi, K.V., Sakai, T., Matsumoto, K., Toko, K., Miura, N., Gobi, K.V., Matsumoto, K., Miura, N., Shankaran, D.R., 2005. Surface plasmon resonance im- munosensor for highly sensitive detection of 2,4,6-trinitrotoluene. Biosens. Bioelectron. 20, 1750-1756. https://doi.org/10.1016/j.bios.2004.06.044. open in new tab
  45. Singh, S., 2007. Sensors -an effective approach for the detection of explosives. J. Hazard. Mater. 144, 15-28. https://doi.org/10.1016/j.jhazmat.2007.02.018. open in new tab
  46. Siuzdak, K., Ficek, M., Sobaszek, M., Ryl, J., Gnyba, M., Niedziałkowski, P., Malinowska, N., Karczewski, J., Bogdanowicz, R., 2017a. Boron-enhanced growth of micron-scale carbon-based nanowalls: a route toward high rates of electrochemical biosensing. ACS Appl. Mater. Interfaces 9, 12982-12992. https://doi.org/10.1021/acsami. 6b16860. open in new tab
  47. Siuzdak, K., Ficek, M., Sobaszek, M., Ryl, J., Gnyba, M., Niedziałkowski, P., Malinowska, N., Karczewski, J., Bogdanowicz, R., 2017b. Boron-enhanced growth of micron-scale carbon-based nanowalls: a route toward high rates of electrochemical biosensing. ACS Appl. Mater. Interfaces 9, 12982-12992. https://doi.org/10.1021/acsami. 6b16860. open in new tab
  48. Sobaszek, M., Siuzdak, K., Ryl, J., Sawczak, M., Gupta, S., Carrizosa, S.B., Ficek, M., Dec, B., Darowicki, K., Bogdanowicz, R., 2017. Diamond phase (sp3-C) rich boron-doped carbon nanowalls (sp2-C): physicochemical and electrochemical properties. J. Phys. Chem. C. 121, 20821-20833. https://doi.org/10.1021/acs.jpcc.7b06365. open in new tab
  49. Soomro, R.A., Akyuz, O.P., Akin, H., Ozturk, R., Ibupoto, Z.H., 2016. Highly sensitive shape dependent electro-catalysis of TNT molecules using Pd and Pd-Pt alloy based nanostructures. RSC Adv. 6, 44955-44962. https://doi.org/10.1039/c6ra05588e. open in new tab
  50. Spencer, E.Y., Wright, G.F., 1946. Preparation of picramide. Can. J. Res. 24, 204-207. https://doi.org/10.1038/1811509b0. open in new tab
  51. Spiker, J.K., Crawford, D.L.O.N.L., Crawford, R.L., 1992. Influence of 2,4,6-trini- trotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58, 3199-3202. open in new tab
  52. Stahl, D.C., Tilotta, D.C., 2001. Screening method for nitroaromatic compounds in water based on solid-phase microextraction and infrared spectroscopy. Environ. Sci. Technol. 35, 3507-3512. https://doi.org/10.1021/es010550c. open in new tab
  53. Toh, H.S., Ambrosi, A., Pumera, M., 2013. Electrocatalytic effect of ZnO nanoparticles on reduction of nitroaromatic compounds. Catal. Sci. Technol. 3, 123-127. https://doi. org/10.1039/c2cy20253k. open in new tab
  54. Tu, R., Liu, B., Wang, Z., Gao, D., Wang, F., Fang, Q., Zhang, Z., 2008. Amine-capped ZnS- Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal. Chem. 80, 3458-3465. https://doi.org/10.1021/ac800060f. open in new tab
  55. Wang, J., 2007. Electrochemical sensing of explosives, counterterrorist detect. Tech. Explos. 91-107. https://doi.org/10.1016/B978-044452204-7/50023-7. open in new tab
  56. Wang, J., Hocevar, S.B., Ogorevc, B., 2004. Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6- trinitrotoluene. Electrochem. Commun. 6, 176-179. https://doi.org/10.1016/j. elecom.2003.11.010. open in new tab
  57. Wang, P., Liu, Z.G., Chen, X., Meng, F.L., Liu, J.H., Huang, X.J., 2013. UV irradiation synthesis of an Au-graphene nanocomposite with enhanced electrochemical sensing properties. J. Mater. Chem. A 1, 9189-9195. https://doi.org/10.1039/c3ta11155e. open in new tab
  58. Wu, L., Almirall, J.R., Furton, K.G., 1999. An improved interface for coupling solid-phase microextraction (SPME) to high performance liquid chromatography (HPLC) applied to the analysis of explosives. HRC J. High Resolut. Chromatogr. 22, 279-282 doi:10.1002/(SICI)1521-4168(19990501)22:5 < 279::AID-JHRC279 > 3.0.CO;2-S. open in new tab
  59. Yew, Y.T., Ambrosi, A., Pumera, M., 2016. Nitroaromatic explosives detection using electrochemically exfoliated graphene. Sci. Rep. 6, 1-11. https://doi.org/10.1038/ srep33276. open in new tab
  60. Yu, H.A., DeTata, D.A., Lewis, S.W., Silvester, D.S., 2017. Recent developments in the electrochemical detection of explosives: towards field-deployable devices for forensic science. TrAC -Trends Anal. Chem. 97, 374-384. https://doi.org/10.1016/j.trac. 2017.10.007. open in new tab
  61. Yu, K., Bo, Z., Lu, G., Mao, S., Cui, S., Zhu, Y., Chen, X., Ruoff, R.S., Chen, J., 2011. A. Dettlaff, et al. Journal of Hazardous Materials 387 (2020) 121672 open in new tab
  62. Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabri- cation. Nanoscale Res. Lett. 6, 1-9. https://doi.org/10.1186/1556-276X-6-202. open in new tab
  63. Zeichner, A., Bronshtein, A., Altstein, M., Almog, J., Glattstein, B., Tamiri, T., 2002. Immunochemical approaches for purification and detection of TNT traces by anti- bodies entrapped in a sol−gel matrix. Anal. Chem. 73, 2461-2467. https://doi.org/ 10.1021/ac001376y. open in new tab
  64. Zhang, Y., Xu, M., Bunes, B.R., Wu, N., Gross, D.E., Moore, J.S., Zang, L., 2015a. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives. ACS Appl. Mater. Interfaces 7, 7471-7475. https://doi.org/ 10.1021/acsami.5b01532. open in new tab
  65. Zhang, H.X., Hu, J.S., Yan, C.J., Jiang, L., Wan, L.J., 2006a. Functionalized carbon na- notubes as sensitive materials for electrochemical detection of ultra-trace 2,4,6-tri- nitrotoluene. Phys. Chem. Chem. Phys. 8, 3567-3572. https://doi.org/10.1039/ b604587c. open in new tab
  66. Zhang, R., Zhang, C., Zheng, F., Li, X., Sun, C., 2018a. Nitrogen and sulfur co-doped graphene nanoribbons : a novel metal-free catalyst for high performance electro- chemical detection of 2, 4, 6-trinitrotoluene (TNT). Carbon 126, 328-337. https:// doi.org/10.1016/j.carbon.2017.10.042. open in new tab
  67. Zhang, R., Zhang, C., Zheng, F., Li, X., Sun, C.L., Chen, W., 2018b. Nitrogen and sulfur co- doped graphene nanoribbons: a novel metal-free catalyst for high performance electrochemical detection of 2, 4, 6-trinitrotoluene (TNT). Carbon N. Y. 126, 328-337. https://doi.org/10.1016/j.carbon.2017.10.042. open in new tab
  68. Zhang, H.X., Cao, A.M., Hu, J.S., Wan, L.J., Lee, S.T., 2006b. Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Anal. Chem. 78, 1967-1971. https://doi.org/10.1021/ac051826s. open in new tab
  69. Zhang, R., Sun, C.L., Lu, Y.J., Chen, W., 2015b. Graphene nanoribbon-supported PtPd concave nanocubes for electrochemical detection of TNT with high sensitivity and selectivity. Anal. Chem. 87, 12262-12269. https://doi.org/10.1021/acs.analchem. 5b03390. open in new tab
  70. A. Dettlaff, et al. Journal of Hazardous Materials 387 (2020) 121672 open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 18 times

Recommended for you

Meta Tags