Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte - Publication - Bridge of Knowledge

Search

Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte

Abstract

The electrochemical performance of Co3O4/CeO2 mixed oxide materials as electrodes, when exposed to H2S/H2O atmospheres, was examined employing a proton conducting symmetrical cell, with BaZr0.7Ce0.2Y0.1O3 (BZCY72) as the solid electrolyte. The impact of temperature (700–850 °C) and H2S concentration (0–1 v/v%) in steam-rich atmospheres (90 v/v% H2O) on the overall cell performance was thoroughly assessed by means of electrochemical impedance spectroscopy (EIS) studies. The performance of the Co3O4/CeO2 electrode was significantly enhanced by increasing the H2S concentration and temperature. The obtained results were interpreted on the basis of EIS results and physicochemical characterization (XRD, SEM) studies of fresh and used electrodes. Notably, it was found that the mass transport processes, mainly associated with the adsorption and diffusion of the intermediate species resulting by the chemical and half-cell reactions taking place during cell operation, dominate the electrode polarization resistance compared with the charge transfer processes. Upon increasing temperature and H2S concentration, the electrode resistance is substantially lowered, due to the in situ activation and morphological modifications of the electrode, induced by its interaction with the reactants (H2S/H2O) and products (H2/SO2) mixtures.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Authors (7)

  • Photo of  Tzouliana Kraia

    Tzouliana Kraia

    • University of Western Macedonia, Kozani, Greece Department of Mechanical Engineering,
  • Photo of Dr Einar Vollestad

    Einar Vollestad Dr

    • University of Oslo Department of Chemistry, Centre for Materials Science and Nanotechnology
  • Photo of Dr Ragnar Strandbakke

    Ragnar Strandbakke Dr

    • University of Oslo Department of Chemistry, Centre for Materials Science and Nanotechnology
  • Photo of Dr M Konsolakis

    M Konsolakis Dr

    • Technical University of Crete, Chania, Greece School of Production Engineering and Management,
  • Photo of Dr Truls Norby

    Truls Norby Dr

    • University of Oslo Department of Chemistry, Centre for Materials Science and Nanotechnology
  • Photo of Dr G.e. Marnellos

    G.e. Marnellos Dr

    • University of Western Macedonia, Kozani, Greece Department of Mechanical Engineering

Cite as

Full text

download paper
downloaded 25 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SOLID STATE IONICS no. 306, pages 31 - 37,
ISSN: 0167-2738
Language:
English
Publication year:
2017
Bibliographic description:
Kraia T., Wachowski S., Vollestad E., Strandbakke R., Konsolakis M., Norby T., Marnellos G.: Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte// SOLID STATE IONICS. -Vol. 306, (2017), s.31-37
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ssi.2017.04.010
Bibliography: test
  1. M. Midilli, A. Aya, N. Kale, Veziroglu, A parametric investigation of hydrogen energy potential based on H 2 S in Black Sea deep waters, Int. J. Hydrog. Energy 32 (2007) 117-124. open in new tab
  2. Paris Agreement, United Nations Framework Convention on Climate Change. http://unfccc.int/files/essential_background/convention/application/pdf/english_ paris_agreement.pdf, (2015) accessed 10.12.16.
  3. K. Fukuda, M. Dokiya, T. Kameyama, Y. Kotera, Catalytic decomposition of hydrogen sulfide, Ind. Eng. Chem. Fundam. 17 (1978) 243-247. open in new tab
  4. D. Ipsakis, Tz. Kraia, G.E. Marnellos, M. Ouzounidou, S. Voutetakis, R. Dittmeyer, A. Dubbe, K. Haas-Santo, M. Konsolakis, H.E. Figen, N.O. Güldal, S.Z. Baykara, An electrocatalytic membrane-assisted process for hydrogen production from H2S in Black Sea: preliminary results, Int. J. Hydrog. Energy 40 (2015) 7530-7538. open in new tab
  5. E. Luinstra, H 2 S: a potential source for hydrogen, Sulphur 244 (1996) 37-47.
  6. J. Zaman, A. Chakma, Production of hydrogen and sulphur from hydrogen sulphides, Fuel Process Technol. 41 (1995) 159-198. open in new tab
  7. J. Li, J.L. Luo, K.T. Chuang, A.R. Sanger, Proton conductivity and chemical stability of Li 2 SO 4 based electrolyte in a H 2 S-air fuel cell, J. Power Sources 160 (2006) 909-914. open in new tab
  8. S.V. Slavov, K.T. Chuang, A.R. Sanger, J.C. Donini, J. Kot, S. Petrovic, A proton- conducting solid state H 2 S-O 2 fuel cell. 1. Anode catalysts, and operation at atmospheric pressure and 20-90°C, Int. J. Hydrog. Energy 23 (1998) 1203-1212. open in new tab
  9. E. Fabbri, D. Pergolesi, E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: a critical review, Chem. Soc. Rev. 39 (2010) 339-359. open in new tab
  10. L. Malavasi, C.A.J. Fisher, M.S. Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications. Structural and mechanistic features, Chem. Soc. Rev. 39 (2010) 4370-4387. open in new tab
  11. V. Vorontsov, J.L. Luo, A.R. Sanger, K.T. Chuang, Synthesis and characterization of new ternary transition metal sulphide anodes for H 2 S-powered solid oxide fuel cell, J. Power Sources 183 (2008) 76-83. open in new tab
  12. M. Gong, X. Liu, J. Trembly, C. Johnson, Sulfur-tolerant anode materials for solid oxide fuel cell application, J. Power Sources 168 (2007) 289-298. open in new tab
  13. M. Konsolakis, The role of copper-ceria interactions in catalysis science: recent theoretical and experimental advances, Appl. Catal. B Environ. 198 (2016) 49-66. open in new tab
  14. A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Nat. Mater. 3 (2004) 17-27. open in new tab
  15. Tz. Kraia, M. Konsolakis, G.E. Marnellos, H 2 S in Black Sea: turning an environ- mental threat to an opportunity for clean H 2 production via an electrochemical membrane reactor, Research Progress in H 2 S-PROTON Project, MATEC Web Conf. 41, 2016 (04002).
  16. NorECs, Norwegian Electro Ceramics AS. http://www.norecs.com http://www. norecs.com/index.php?page=Newsletter+154 (accessed 08.12.16). open in new tab
  17. J. Li, J.-L. Luo, K.T. Chuang, A.R. Sanger, Chemical stability of Y-doped Ba(Ce,Zr)O 3 perovskites in H 2 S-containing H 2 , Electrochim. Acta 53 (2008) 3701-3707. open in new tab
  18. R. Strandbakke, O. Dyrlie, F.S. Hage, T. Norby, Reaction kinetics of protons and oxide ions in LSM/lanthanum tungstate cathodes with Pt nanoparticle activation, J. Electrochem. Soc. 163 (2016) 507-515. open in new tab
  19. R. Strandbakke, V.A. Cherepanov, A.Y. Zuev, D.S. Tsvetkov, C. Argirusis, G. Sourkouni, S. Prünte, T. Norby, Gd-and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells, Solid State Ionics 278 (2015) 120-132. open in new tab
  20. J.M. Polfus, T. Norby, R. Bredesen, Protons in oxysulfides, oxysulfates, and sulfides: a first-principles study of La 2 O 2 S, La 2 O 2 SO 4 , SrZrS 3 , and BaZrS 3 , J. Phys. Chem. C 119 (2015) 23875-23882. open in new tab
  21. D. Medvedev, J. Lyagaeva, S. Plaskin, A. Demin, P. Tsiakaras, Sulfur and carbon tolearance pf BaCeO 3 -BaZrO 3 proton conducting materilas, J. Power Sources 273 (2015) 716-723. open in new tab
  22. M. Gong, X. Liu, J. Trembly, C. Johnson, Sulfur-tolerant anode materials for solid oxide fuel cell application, J. Power Sources 168 (2007) 289-298. open in new tab
Verified by:
Gdańsk University of Technology

seen 125 times

Recommended for you

Meta Tags