Electrochemical simulation of metabolic reduction and conjugation reactions of unsymmetrical bisacridine antitumor agents, C-2028 and C-2053 - Publication - Bridge of Knowledge

Search

Electrochemical simulation of metabolic reduction and conjugation reactions of unsymmetrical bisacridine antitumor agents, C-2028 and C-2053

Abstract

Electrochemistry (EC) coupled with analysis techniques such as liquid chromatography (LC) and mass spectrometry (MS) has been developed as a powerful tool for drug metabolism simulation. The application of EC in metabolic studies is particularly favourable due to the low matrix contribution compared to in vitro or in vivo biological models. In this paper, the EC(/LC)/MS system was applied to simulate phase I metabolism of the representative two unsymmetrical bisacridines (UAs), named C-2028 and C-2053, which contain nitroaromatic group susceptible to reductive transformations. UAs are a novel potent class of antitumor agents of extraordinary structures that may be useful in the treatment of difficult for therapy human solid tumors such as breast, colon, prostate, and pancreatic tumors. It is considered that the biological action of these compounds may be due to the redox properties of the nitroaromatic group. At first, the relevant conditions for the electrochemical conversion and product identification process, including the electrode potential range, electrolyte composition, and working electrode material, were optimized with the application of 1-nitroacridine as a model compound. Electrochemical simulation of C-2028 and C-2053 reductive metabolism resulted in the generation of six and five products, respectively. The formation of hydroxylamine m/z [M+H-14]+, amine m/z [M+H-30]+, and novel N-oxide m/z [M+H-18]+ species from UAs was demonstrated. Furthermore, both studied compounds were shown to be stable, retaining their dimeric forms, during electrochemical experiments. The electrochemical method also indicated the susceptibility of C-2028 to phase II metabolic reactions. The respective glutathione and dithiothreitol adducts of C-2028 were identified as ions at m/z 873 and m/z 720. In conclusion, the electrochemical reductive transformations of antitumor UAs allowed for the synthesis of new reactive intermediate forms permitting the study of their interactions with biologically crucial molecules.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cite as

Full text

download paper
downloaded 32 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS no. 197,
ISSN: 0731-7085
Language:
English
Publication year:
2021
Bibliographic description:
Potęga A., Paczkowski S., Paluszkiewicz E., Mazerska Z.: Electrochemical simulation of metabolic reduction and conjugation reactions of unsymmetrical bisacridine antitumor agents, C-2028 and C-2053// JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS -Vol. 197, (2021), s.113970-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jpba.2021.113970
Verified by:
Gdańsk University of Technology

seen 148 times

Recommended for you

Meta Tags