Abstract
This article is intended to analyze forced vibrations of a piezoelectric-piezomagnetic ceramic nanoplate by a new refined shear deformation plate theory in conjunction with higher-order nonlocal strain gradient theory. As both stress nonlocality and strain gradient size-dependent effects are taken into account using the higher-order nonlocal strain gradient theory, the governing equations of the composite nanoplate are formulated. When the nanoplate is subjected to a transverse harmonic loading and all the edges are considered as simple boundaries, the governing equations can be solved with a closed-form solution, from which the maximum dynamic deflections are obtained. To validate the results of the new proposed plate theory, the comparisons between ours and the well-known papers in the literature are presented. The influences of different nonlocal parameters and material properties on the nanoplate's dynamic responses are also studied.
Citations
-
2 2
CrossRef
-
0
Web of Science
-
3 5
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1088/2053-1591/aad144
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Materials Research Express
no. 5,
ISSN: 2053-1591 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Malikan M., Nguyen V. B., Tornabene F.: Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory// Materials Research Express -, (2018), s.075031-
- DOI:
- Digital Object Identifier (open in new tab) 10.1088/2053-1591/aad144
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 72 times
Recommended for you
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory
- M. Malikan,
- V. B. Nguyen,
- F. Tornabene
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory
- M. Malikan,
- V. B. Nguyen,
- F. Tornabene
Thermo-resonance analysis of an excited graphene sheet using a new approach
- M. Malikan,
- R. Dimitri,
- F. Tornabene
Thermo-resonance analysis of an excited graphene sheet using a new approach
- M. Malikan,
- R. Dimitri,
- F. Tornabene