Electronic noses: Powerful tools in meat quality assessment - Publication - MOST Wiedzy

Search

Electronic noses: Powerful tools in meat quality assessment

Abstract

Main factors that are considered by consumers when choosing meat products are colour and aroma, of which the latter is a more reliable indicator of quality. However, a simple sensory evaluation of hedonistic qualities is often not sufficient to determine whether protein is past its shelf life, and consumption of spoiled meat can lead to serious health hazards. Some volatile compounds can be used as spoilage indicators, and so a device equipped with a sensor sensitive to particular odorants would prove useful. Unfortunately, no such single compound has yet been identified, as the changes taking place in a sample of meat during storage are contingent on numerous factors. On the other hand, a combination of volatile compounds may form a unique ‘fingerprint’ which can be analysed pattern recognition algorithms with an electronic nose. It can supplement established techniques of meat quality assessment by providing results that correlate well with hedonic perception in a short time and at a low cost.

Citations

  • 4 9

    CrossRef

  • 4 5

    Web of Science

  • 5 0

    Scopus

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MEAT SCIENCE no. 131, pages 119 - 131,
ISSN: 0309-1740
Language:
English
Publication year:
2017
Bibliographic description:
Wojnowski W., Majchrzak T., Dymerski T., Gębicki J., Namieśnik J.: Electronic noses: Powerful tools in meat quality assessment// MEAT SCIENCE. -Vol. 131, (2017), s.119-131
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.meatsci.2017.04.240
Bibliography: test
  1. Aernecke, M. J., & Walt, D. R. (2009). Optical-fiber arrays for vapor sensing. Sensors and Actuators B: Chemical, 142(2), 464-469. http://dx.doi.org/10.1016/j.snb.2009.06. 054. open in new tab
  2. Albert, K. J., Lewis, N. S., Schauer, C. L., Sotzing, G. A., Stitzel, S. E., Vaid, T. P., & Walt, D. R. (2000). Cross-reactive chemical sensor arrays. Chemical Reviews, 100(7), 2595-2626. http://dx.doi.org/10.1021/cr980102w. open in new tab
  3. Ampuero, S., Bee, G., & Hansen-Møller, J. (2006). The potential to detect boar tainted carcasses by using an electronic nose based on mass spectrometry. Acta Veterinaria Scandinavica. BioMed Central. http://dx.doi.org/10.1186/1751-0147-48-S1-P1. open in new tab
  4. Ampuero, S., & Bosset, J. O. (2003). The electronic nose applied to dairy products: A review. Sensors and Actuators B: Chemical, 94(1), 1-12. http://dx.doi.org/10.1016/ S0925-4005(03)00321-6. open in new tab
  5. Annor-Frempong, I. E., Nute, G. R., Wood, J. D., Whittington, F. W., & West, A. (1998). The measurement of the responses to different odour intensities of`boar taint' using a sensory panel and an electronic nose. Meat Science, 50(2), 139-151. http://dx.doi. org/10.1016/S0309-1740(98)00001-1. open in new tab
  6. Arshak, K., Moore, E., Lyons, G. M., Harris, J., & Clifford, S. (2004). A review of gas sensors employed in electronic nose applications. Sensor Review, 24(2), 181-198. http://dx.doi.org/10.1108/02602280410525977. open in new tab
  7. Balasubramanian, S., Logue, C. M., & Marchello, M. (2004). Spoilage identification of beef using an electronic nose system. Transactions of the ASAE, 47(5), 1625-1633. open in new tab
  8. Balasubramanian, S., Panigrahi, S., Logue, C. M., Doetkott, C., Marchello, M., & Sherwood, J. S. (2008). Independent component analysis-processed electronic nose data for predicting Salmonella typhimurium populations in contaminated beef. Food Control, 19(3), 236-246. http://dx.doi.org/10.1016/j.foodcont.2007.03.007. open in new tab
  9. Balasubramanian, S., Panigrahi, S., Logue, C. M., Gu, H., & Marchello, M. (2009). Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification. Journal of Food Engineering, 91(1), 91-98. http://dx.doi.org/10.1016/ j.jfoodeng.2008.08.008. open in new tab
  10. Balasubramanian, S., Panigrahi, S., Logue, C. M., Marchello, M., & Serwood, J. S. (2005). Identification of salmonella-inoculated beef using a portable electronic nose system. Journal of Rapid Methods and Automation in Microbiology, 13(2), 71-95. http://dx.doi. org/10.1111/j.1745-4581.2005.00011.x. open in new tab
  11. Barié, N., Bücking, M., & Rapp, M. (2006). A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring. Sensors and Actuators B: Chemical, 114(1), 482-488. http://dx.doi.org/10.1016/j.snb. 2005.06.051. open in new tab
  12. Bedoui, S., Faleh, R., Samet, H., & Kachouri, A. (2013). Electronic nose system and principal component analysis technique for gases identification (pp. 1-6). IEEE. http://dx.doi.org/ 10.1109/SSD.2013.6564152. open in new tab
  13. Bellec, P., Rosa-Neto, P., Lyttelton, O. C., Benali, H., & Evans, A. C. (2010). Multi-level bootstrap analysis of stable clusters in resting-state fMRI. http://dx.doi.org/10.1016/j. neuroimage.2010.02.082. open in new tab
  14. Blixt, Y., & Borch, E. (1999). Using an electronic nose for determining the spoilage of vacuum-packaged beef. International Journal of Food Microbiology, 46(2), 123-134. http://dx.doi.org/10.1016/S0168-1605(98)00192-5. open in new tab
  15. Bonneau, M. (1982). Compounds responsible for boar taint, with special emphasis on androstenone: A review. Livestock Production Science, 9(6), 687-705. open in new tab
  16. Borjesson, T., Eklov, T., Jonsson, A., Sundgren, H., & Schnurer, J. (1996). Electronic nose for odor classification of grains. Cereal Chemistry, 73(4), 457-461.
  17. Bougrini, M., Tahri, K., Haddi, Z., Saidi, T., El Bari, N., & Bouchikhi, B. (2014). Detection of adulteration in Argan oil by using an electronic nose and a voltammetric electronic tongue. Journal of Sensors, 2014, 1-10. http://dx.doi.org/10.1155/2014/245831. open in new tab
  18. Bourrounet, B., Talou, T., & Gaset, A. (1995). Application of a multi-gas-sensor device in the meat industry for boar-taint detection. Sensors and Actuators B: Chemical, 27, 250-254. http://dx.doi.org/10.1016/0925-4005(94)01596-A. open in new tab
  19. Buck, T., Allen, F., & Dalton, J. (1965). Detection of chemical species by surface effects on metals and semiconductors. Surface effects in detection. Spartan Books.
  20. Burian, C., Brezmes, J., Vinaixa, M., Cañellas, N., Llobet, E., Vilanova, X., & Correig, X. (2010). MS-electronic nose performance improvement using the retention time dimension and two-way and three-way data processing methods. Sensors and Actuators B: Chemical, 143(2), 759-768. http://dx.doi.org/10.1016/j.snb.2009.10. 015. open in new tab
  21. Byrne, D. V., Bak, L. S., Bredie, W. L. P., Bertelsen, C., & Martens, M. (1999). Development of a sensory vocabulary for warmed-over flavor: Part I. In porcine meat. Journal of Sensory Studies, 14(1), 47-65. http://dx.doi.org/10.1111/j.1745-459X.1999. tb00104.x. open in new tab
  22. Capelli, L., Sironi, S., & Del Rosso, R. (2014). Electronic noses for environmental monitoring applications. Sensors, 14(11), 19979-20007. http://dx.doi.org/10.3390/ s141119979. open in new tab
  23. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business researchNew York: Psychology Press. Retrieved from https://books.google.com/books?hl=pl&lr=&id= EDZ5AgAAQBAJ&pgis=1.
  24. Collier, W., Baird, D., Park-Ng, Z., More, N., & Hart, A. (2003). Discrimination among milks and cultured dairy products using screen-printed electrochemical arrays and an electronic nose. Sensors and Actuators B: Chemical, 92(1), 232-239. http://dx.doi.org/ 10.1016/S0925-4005(03)00271-5. open in new tab
  25. Cynkar, W., Cozzolino, D., Dambergs, B., Janik, L., & Gishen, M. (2007). Feasibility study on the use of a head space mass spectrometry electronic nose (MS e_nose) to monitor red wine spoilage induced by Brettanomyces yeast. Sensors and Actuators B: Chemical, 124(1), 167-171. http://dx.doi.org/10.1016/j.snb.2006.12.017. open in new tab
  26. Cyranose 320 Portable Handheld Electronic Nose (2014). Retrieved from http://www. sensigent.com/products/C320Datasheet.pdf. open in new tab
  27. D'Amico, A., Pennazza, G., Santonico, M., Martinelli, E., Roscioni, C., Galluccio, G., ... Di Natale, C. (2010). An investigation on electronic nose diagnosis of lung cancer. Lung Cancer (Amsterdam, Netherlands), 68(2), 170-176. http://dx.doi.org/10.1016/j. lungcan.2009.11.003. open in new tab
  28. Dayhoff, J. E., & DeLeo, J. M. (2001). Artificial neural networks: opening the black box. Cancer, 91(8 Suppl), 1615-1635. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/11309760. open in new tab
  29. Deisingh, A. K., Stone, D. C., & Thompson, M. (2004). Applications of electronic noses and tongues in food analysis. International Journal of Food Science and Technology, 39(6), 587-604. http://dx.doi.org/10.1111/j.1365-2621.2004.00821.x. open in new tab
  30. Di Natale, C., Macagnano, A., Davide, F., D'Amico, A., Paolesse, R., Boschi, T., ... Ferri, G. (1997). An electronic nose for food analysis. Sensors and Actuators B: Chemical, 44(1), 521-526. http://dx.doi.org/10.1016/S0925-4005(97)00175-5. open in new tab
  31. Di Natale, C., Pennazza, G., Macagnano, A., Martinelli, E., Paolesse, R., & D'Amico, A. (2003). Thickness shear mode resonator sensors for the detection of androstenone in pork fat. Sensors and Actuators B: Chemical, 91(1), 169-174. http://dx.doi.org/10. 1016/S0925-4005(03)00084-4. open in new tab
  32. Ding, N., Lan, Y., & Zheng, X. (2010). Rapid detection of E. coli on goat meat by electronic nose. Advances in Natural Science, 3(2), 185-191. http://dx.doi.org/10.3968/g950. open in new tab
  33. Dravnieks, A., & Trotter, P. J. (1965). Polar vapour detector based on thermal modulation of contact potential. Journal of Scientific Instruments, 42(8), 624-627. http://dx.doi. org/10.1088/0950-7671/42/8/335. open in new tab
  34. Dymerski, T. M., Chmiel, T. M., & Wardencki, W. (2011). An odor-sensing system - powerful technique for foodstuff studies. The Review of Scientific Instruments, 82(11), 111101. http://dx.doi.org/10.1063/1.3660805. open in new tab
  35. Ehrmann, S., Jüngst, J., & Goschnick, J. (2000). Automated cooking and frying control using a gas sensor microarray. Sensors and Actuators B: Chemical, 66(1), 43-45. http://dx.doi.org/10.1016/S0925-4005(99)00354-8. open in new tab
  36. Eklöv, T., Johansson, G., & Winquist, F. (1998). Monitoring sausage fermentation using an electronic nose. Sci Food Agrid, 76, 525-532. open in new tab
  37. Eklöv, T., Mårtensson, P., & Lundström, I. (1997). Enhanced selectivity of MOSFET gas sensors by systematical analysis of transient parameters. Analytica Chimica Acta, 353(2-3), 291-300. http://dx.doi.org/10.1016/S0003-2670(97)87788-4. open in new tab
  38. El Barbri, N., Llobet, E., El Bari, N., Correig, X., & Bouchikhi, B. (2008). Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat. Sensors, 8(1), 142-156. http://dx.doi.org/10. 3390/s8010142. open in new tab
  39. Escuderos, M. E., Sánchez, S., & Jiménez, A. (2011). Quartz crystal microbalance (QCM) sensor arrays selection for olive oil sensory evaluation. Food Chemistry, 124(3), 857-862. http://dx.doi.org/10.1016/j.foodchem.2010.07.007. open in new tab
  40. Fishler, F. (1995). Commission decision of 8 March 1995 fixing the total volatile basic nitrogen (TVB-N) limit values for certain categories of fishery products and specifying the analysis methods to be used. Official Journal of the European Communities. Retrieved from http://data.europa.eu/eli/dec/1995/149/oj.
  41. García, M., Aleixandre, M., Gutiérrez, J., & Horrillo, M. C. (2006). Electronic nose for ham discrimination. Sensors and Actuators B: Chemical, 114(1), 418-422. http://dx.doi. org/10.1016/j.snb.2005.04.045. open in new tab
  42. Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators B: Chemical, 18(1-3), 210-220. http://dx.doi.org/10.1016/0925-4005(94) 87085-3. open in new tab
  43. Gebicki, J., & Dymerski, T. (2016). Application of chemical sensors and sensor matrixes to air quality evaluation. Comprehensive Analytical Chemistry. http://dx.doi.org/10. 1016/bs.coac.2016.02.007. open in new tab
  44. Gębicki, J. (2016). Application of electrochemical sensors and sensor matrixes for measurement of odorous chemical compounds. TrAC Trends in Analytical Chemistry, 77, 1-13. http://dx.doi.org/10.1016/j.trac.2015.10.005. open in new tab
  45. Ghaly, A. E., Dave, D., & Ghaly, A. E. (2011). Meat spoilage mechanisms and preservation techniques: A critical review. American Journal of Agricultural and Biological Sciences, 6(4), 486-510. Retrieved from http://thescipub.com/PDF/ajabssp.2011.486.510. pdf.
  46. Ghasemi-Varnamkhasti, M., Mohtasebi, S. S., Siadat, M., & Balasubramanian, S. (2009). Meat quality assessment by electronic nose (machine olfaction technology). Sensors, 9(8), 6058-6083. http://dx.doi.org/10.3390/s90806058. open in new tab
  47. Giordani, D. S., Siqueira, A. F., Silva, M. L. C. P., Oliveira, P. C., & Castro, H. F. D. (2008). Identification of the biodiesel source using an electronic nose. Energy & Fuels, 22(9), 2743-2747. http://dx.doi.org/10.1021/ef700760b. open in new tab
  48. Glatz, R., & Bailey-Hill, K. (2011). Mimicking nature's noses: From receptor deorphaning to olfactory biosensing. Progress in Neurobiology, 93(2), 270-296. http://dx.doi.org/ 10.1016/j.pneurobio.2010.11.004. open in new tab
  49. González-Martín, I., Pérez-Pavón, J. L., González-Pérez, C., Hernández-Méndez, J., & Álvarez-García, N. (2000). Differentiation of products derived from Iberian breed swine by electronic olfactometry (electronic nose). Analytica Chimica Acta, 424(2), 279-287. http://dx.doi.org/10.1016/S0003-2670(00)01106-5. open in new tab
  50. Grigioni, G. M., Margaría, C. A., Pensel, N. A., Sánchez, G., & Vaudagna, S. R. (2000). Warmed-over flavour analysis in low temperature-long time processed meat by an "electronic nose". Meat Science, 56(3), 221-228. http://dx.doi.org/10.1016/S0309- 1740(00)00045-0. open in new tab
  51. Hansen, T., Petersen, M. A., & Byrne, D. V. (2005). Sensory based quality control utilising an electronic nose and GC-MS analyses to predict end-product quality from raw materials. Meat Science, 69(4), 621-634. http://dx.doi.org/10.1016/j.meatsci.2003. 11.024. open in new tab
  52. Haugen, J. (2006). The use of chemical sensor array technology, the electronic nose, for detection of boar taint. BioMed Central: Acta Veterinaria Scandinavicahttp://dx.doi. org/10.1186/1751-0147-48-S1-S15. open in new tab
  53. Haugen, J.-E., Brunius, C., & Zamaratskaia, G. (2012). Review of analytical methods to measure boar taint compounds in porcine adipose tissue: The need for harmonised methods. Meat Science, 90(1), 9-19. http://dx.doi.org/10.1016/j.meatsci.2011.07. 005. open in new tab
  54. Hong, X., & Wang, J. (2012). Discrimination and prediction of pork freshness by E-nose. IFIP Advances in Information and Communication Technology, 370 AICT(PART 3), 1-14. http://dx.doi.org/10.1007/978-3-642-27275-2_1. open in new tab
  55. Hong, X., Wang, J., & Hai, Z. (2012). Discrimination and prediction of multiple beef freshness indexes based on electronic nose. Sensors and Actuators B: Chemical, 161(1), 381-389. http://dx.doi.org/10.1016/j.snb.2011.10.048. open in new tab
  56. Huang, L., Zhao, J., Chen, Q., & Zhang, Y. (2014a). Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chemistry, 145, 228-236. http://dx.doi.org/10.1016/j.foodchem.2013.06.073. open in new tab
  57. Huang, X., Zou, X., Zhao, J., Shi, J., Zhang, X., Li, Z., & Shen, L. (2014b). Sensing the quality parameters of Chinese traditional Yao-meat by using a colorimetric sensor combined with genetic algorithm partial least squares regression. Meat Science, 98(2), 203-210. http://dx.doi.org/10.1016/j.meatsci.2014.05.033. open in new tab
  58. Janata, J., & Josowicz, M. (2003). Conducting polymers in electronic chemical sensors. Nature Materials, 2(1), 19-24. http://dx.doi.org/10.1038/nmat768. open in new tab
  59. Jayathilakan, K., Sharma, G. K., Radhakrishna, K., & Bawa, A. S. (2007). Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. Food Chemistry, 105(3), 908-916. http://dx.doi.org/10. 1016/j.foodchem.2007.04.068. open in new tab
  60. Jensen, P. N., Bertelsen, G., & Van Den Berg, F. (2005). Monitoring oxidative quality of pork scratchings, peanuts, oatmeal and muesli by sensor array. Journal of the Science of Food and Agriculture, 85(2), 206-212. http://dx.doi.org/10.1002/jsfa.1946. open in new tab
  61. Jia, H., Lu, Y., He, J., Pan, T., Xiao, L., Zhang, Z., & Zhu, L. (2011). Recognition of yak meat, beef and pork by electronic nose. Transactions of the CSAE, 27(5), 358-363.
  62. Kalman, E.-L., Löfvendahl, A., Winquist, F., & Lundström, I. (2000). Classification of complex gas mixtures from automotive leather using an electronic nose. Analytica Chimica Acta, 403(1-2), 31-38. http://dx.doi.org/10.1016/S0003-2670(99)00604-2. open in new tab
  63. Keller, P. E. (1995). Electronic noses and their applications (pp. 116-). IEEE. http://dx.doi. org/10.1109/NORTHC.1995.485024. open in new tab
  64. Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2016). Fusion of artificial senses as a robust approach to food quality assessment. Journal of Food Engineering, 171, 230-239. http://dx.doi.org/10.1016/j.jfoodeng.2015.10.007. open in new tab
  65. Kim, J. H. H., Lee, J. W. W., Shon, S. H. H., Jang, A., Lee, K. T. T., Lee, M., & Jo, C. (2008). Reduction of volatile compounds and off-odor in irradiated ground pork using a charcoal packaging. Journal of Muscle Foods, 19(2), 194-208. http://dx.doi.org/10. 1111/j.1745-4573.2008.00112.x. open in new tab
  66. Kodogiannis, V. S. (2013). Point-of-care diagnosis of bacterial pathogens in vitro, utilising an electronic nose and wavelet neural networks. Neural Computing and Applications, 1-14. http://dx.doi.org/10.1007/s00521-013-1494-8. open in new tab
  67. Korel, F., & Balaban, M. O. (2009). Electronic nose technology in food analysis. In S. Ötleş (Ed.), Handbook of food analysis instruments (pp. 365-378). Boca Raton, FL: CRC Press.
  68. Koutsoumanis, K. P., Stamatiou, A. P., Drosinos, E. H., & Nychas, G.-J. E. (2008). Control of spoilage microorganisms in minced pork by a self-developed modified atmosphere induced by the respiratory activity of meat microflora. Food Microbiology, 25(7), 915-921. http://dx.doi.org/10.1016/j.fm.2008.05.006. open in new tab
  69. Law, J., & Jolliffe, I. T. (1987). Principal component analysis. The Statistician, 36(4), 432. http://dx.doi.org/10.2307/2348864. open in new tab
  70. Li, H., Chen, Q., Zhao, J., & Ouyang, Q. (2014). Non-destructive evaluation of pork freshness using a portable electronic nose (E-nose) based on a colorimetric sensor array. Analytical Methods, 6(16), 6271. http://dx.doi.org/10.1039/C4AY00014E. open in new tab
  71. Li, H., Chen, Q., Zhao, J., & Wu, M. (2015). Nondestructive detection of total volatile basic nitrogen (TVB-N) content in pork meat by integrating hyperspectral imaging and colorimetric sensor combined with a nonlinear data fusion. LWT -Food Science and Technology, 63(1), 268-274. http://dx.doi.org/10.1016/j.lwt.2015.03.052. open in new tab
  72. Limbo, S., Torri, L., Sinelli, N., Franzetti, L., & Casiraghi, E. (2010). Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures. Meat Science, 84(1), 129-136. http://dx.doi.org/10.1016/j.meatsci.2009.08.035. open in new tab
  73. Loutfi, A., Coradeschi, S., Mani, G. K., Shankar, P., & Rayappan, J. B. B. (2015). Electronic noses for food quality: A review. Journal of Food Engineering, 144, 103-111. http://dx. doi.org/10.1016/j.jfoodeng.2014.07.019. open in new tab
  74. Martí, M. P., Busto, O., Guasch, J., & Boqué, R. (2005). Electronic noses in the quality control of alcoholic beverages. TrAC Trends in Analytical Chemistry, 24(1), 57-66. http://dx.doi.org/10.1016/j.trac.2004.09.006. open in new tab
  75. Mayr, D., Margesin, R., Klingsbichel, E., Hartungen, E., Jenewein, D., Schinner, F., & Märk, T. D. (2003). Rapid detection of meat spoilage by measuring volatile organic compounds by using proton transfer reaction mass spectrometry. Applied and Environmental Microbiology, 69(8), 4697-4705. http://dx.doi.org/10.1128/aem.69.8. 4697-4705.2003. open in new tab
  76. McEntegart, C. M., Penrose, W. R., Strathmann, S., & Stetter, J. R. (2000). Detection and discrimination of coliform bacteria with gas sensor arrays. Sensors and Actuators B: Chemical, 70(1-3), 170-176. http://dx.doi.org/10.1016/S0925-4005(00)00561-X. open in new tab
  77. Mielle, P., Marquis, F., & Latrasse, C. (2000). Electronic noses: Specify or disappear. Sensors and Actuators B: Chemical, 69(3), 287-294. http://dx.doi.org/10.1016/ S0925-4005(00)00509-8. open in new tab
  78. Moncrieff, R. W. (1961). An instrument for measuring and classifying odors. Journal of Applied Physiology, 16(4), 742-749. Retrieved from http://jap.physiology.org/ content/16/4/742. open in new tab
  79. Monroy, J. G., Gonzalez-Jimenez, J., & Sanchez-Garrido, C. (2014). Monitoring household garbage odors in urban areas through distribution maps. IEEE SENSORS 2014 Proceedings (pp. 1364-1367). IEEE. http://dx.doi.org/10.1109/ICSENS.2014. 6985265. open in new tab
  80. Morvan, M., Talou, T., & Beziau, J.-F. (2003). MOS-MOSFET gas sensors array measurements versus sensory and chemical characterisation of VOC's emissions from car seat foams. Sensors and Actuators B: Chemical, 95(1), 212-223. http://dx.doi.org/ 10.1016/S0925-4005(03)00425-8. open in new tab
  81. Musatov, V. Y., Sysoev, V. V., Sommer, M., & Kiselev, I. (2010). Assessment of meat freshness with metal oxide sensor microarray electronic nose: A practical approach. Sensors and Actuators B: Chemical, 144(1), 99-103. http://dx.doi.org/10.1016/j.snb. 2009.10.040. open in new tab
  82. Neely, K., Taylor, C., Prosser, O., & Hamlyn, P. F. (2001). Assessment of cooked alpaca and llama meats from the statistical analysis of data collected using an "electronic nose". Meat Science, 58(1), 53-58. http://dx.doi.org/10.1016/S0309-1740(00) 00130-3. open in new tab
  83. Nurjuliana, M., Che Man, Y. B., & Mat Hashim, D. (2011a). Analysis of Lard's aroma by an electronic nose for rapid halal authentication. Journal of the American Oil Chemists' Society, 88(1), 75-82. http://dx.doi.org/10.1007/s11746-010-1655-1. open in new tab
  84. Nurjuliana, M., Che Man, Y. B., Mat Hashim, D., & Mohamed, A. K. S. (2011b). Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer. Meat Science, 88(4), 638-644. http://dx.doi.org/10.1016/j.meatsci.2011.02.022. open in new tab
  85. O'Sullivan, M., Byrne, D., Jensen, M., Andersen, H., & Vestergaard, J. (2003). A comparison of warmed-over flavour in pork by sensory analysis, GC/MS and the electronic nose. Meat Science, 65(3), 1125-1138. http://dx.doi.org/10.1016/S0309- 1740(02)00342-X. open in new tab
  86. OECD/Food and Agriculture Organization of the United Nations (2015). OECD-FAO agricultural outlook 2015. Paris. Retrieved fromhttp://dx.doi.org/10.1787/agr_ outlook-2015-en. open in new tab
  87. Olsen, E., Vogt, G., Ekeberg, D., Sandbakk, M., Pettersen, J., & Nilsson, A. (2005a). Analysis of the early stages of lipid oxidation in freeze-stored pork back fat and mechanically recovered poultry meat. Journal of Agricultural and Food Chemistry, 53(2), 338-348. http://dx.doi.org/10.1021/jf0488559. open in new tab
  88. Olsen, E., Vogt, G., Veberg, A., Ekeberg, D., & Nilsson, A. (2005b). Analysis of early lipid oxidation in smoked, comminuted pork or poultry sausages with spices. Journal of Agricultural and Food Chemistry, 53, 7448-7457. open in new tab
  89. Otero, L., Horrillo, C., García, M., Sayago, I., Aleixandre, M., Fernández, J., ... Gutiérrez, J. (2003). Detection of Iberian ham aroma by a semiconductor multisensorial system. Meat Science, 65(3), 1175-1185. http://dx.doi.org/10.1016/S0309-1740(02) 00347-9. open in new tab
  90. Panigrahi, S., Balasubramanian, S., Gu, H., Logue, C. M., & Marchello, M. (2006). Design and development of a metal oxide based electronic nose for spoilage classification of beef. Sensors and Actuators B: Chemical, 119(1), 2-14. http://dx.doi.org/10.1016/j. snb.2005.03.120. open in new tab
  91. Papadopoulou, O. S., Panagou, E. Z., Mohareb, F. R., & Nychas, G.-J. E. (2013). Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis. Food Research International, 50(1), 241-249. http://dx.doi.org/10.1016/j.foodres.2012.10.020. open in new tab
  92. Papadopoulou, O. S., Tassou, C. C., Schiavo, L., Nychas, G.-J. E., & Panagou, E. Z. (2011). Rapid assessment of meat quality by means of an electronic nose and support vector machines. Procedia Food Science, 1(Icef 11), 2003-2006. http://dx.doi.org/10.1016/j. profoo.2011.09.295. open in new tab
  93. Pardo, M., Kwong, L. G., Sberveglieri, G., Brubaker, K., Schneider, J. F., Penrose, W. R., & Stetter, J. R. (2005). Data analysis for a hybrid sensor array. Sensors and Actuators B: Chemical, 106(1), 136-143. http://dx.doi.org/10.1016/j.snb.2004.05.045. open in new tab
  94. Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352-355. http://dx.doi.org/ 10.1038/299352a0. open in new tab
  95. Persaud, K., & Pelosi, P. (1992). Sensor arrays using conducting polymers for an artificial nose. In J. W. Gardner, & P. N. Bartlett (Eds.), Sensors and Sensory Systems for an Electronic Nose (pp. 237-256). Springer Science & Business Media. open in new tab
  96. Rajamäki, T., Alakomi, H.-L., Ritvanen, T., Skyttä, E., Smolander, M., & Ahvenainen, R. (2006). Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat. Food Control, 17(1), 5-13. http://dx.doi.org/10. 1016/j.foodcont.2004.08.002. open in new tab
  97. Salinas, Y., Ros-Lis, J. V., Vivancos, J. L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S., ... open in new tab
  98. Garcia, E. (2014). A novel colorimetric sensor array for monitoring fresh pork sausages spoilage. Food Control, 35(1), 166-176. http://dx.doi.org/10.1016/j. foodcont.2013.06.043. open in new tab
  99. Santonico, M., Pennazza, G., Grasso, S., D'Amico, A., & Bizzarri, M. (2013). Design and test of a biosensor-based multisensorial system: A proof of concept study. Sensors (Basel, Switzerland), 13(12), 16625-16640. http://dx.doi.org/10.3390/s131216625. open in new tab
  100. Santos, J. P., García, M., Aleixandre, M., Horrillo, M. C., Gutiérrez, J., Sayago, I., ... Arés, L. (2004). Electronic nose for the identification of pig feeding and ripening time in Iberian hams. Meat Science, 66(3), 727-732. http://dx.doi.org/10.1016/j.meatsci. 2003.07.005. open in new tab
  101. Schaller, E., Bosset, J. O., & Escher, F. (1998). "Electronic noses" and their application to food. LWT -Food Science and Technology, 31(4), 305-316. http://dx.doi.org/10.1006/ fstl.1998.0376. open in new tab
  102. Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3-4), 183-207. http://dx.doi.org/10.1007/s00604-006- 0623-9. open in new tab
  103. Shelf life of foods: Guidelines for its determination and prediction (1993). London: Institute of Food Science and Technology (U.K.). open in new tab
  104. Śliwińska, M., Wiśniewska, P., Dymerski, T., Namieśnik, J., & Wardencki, W. (2014a). Food analysis using artificial senses. Journal of Agricultural and Food Chemistry, 62(7), 1423-1448. http://dx.doi.org/10.1021/jf403215y. open in new tab
  105. Śliwińska, M., Wiśniewska, P., Dymerski, T., Namieśnik, J., & Wardencki, W. (2014b). Food analysis using artificial senses. Journal of Agricultural and Food Chemistry, 62(7), 1423-1448. http://dx.doi.org/10.1021/jf403215y. open in new tab
  106. Tang, X., Sun, X., Wu, V. C. H., Xie, J., Pan, Y., Zhao, Y., & Malakar, P. K. (2013). Predicting shelf-life of chilled pork sold in China. Food Control, 32(1), 334-340. http://dx.doi.org/10.1016/j.foodcont.2012.12.010. open in new tab
  107. Taurino, A. M., Monaco, D. D., Capone, S., Epifani, M., Rella, R., Siciliano, P., ...
  108. Balzarano, D. (2003). Analysis of dry salami by means of an electronic nose and correlation with microbiological methods. Sensors and Actuators B: Chemical, 95(1), 123-131. http://dx.doi.org/10.1016/S0925-4005(03)00421-0. open in new tab
  109. Tian, X., Wang, J., & Cui, S. (2013). Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. Journal of Food Engineering, 119(4), 744-749. open in new tab
  110. http://dx.doi.org/10.1016/j.jfoodeng.2013.07.004. open in new tab
  111. Tian, X. Y., Cai, Q., & Zhang, Y. M. (2012). Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method. Sensors, 12(1), 260-277. http://dx.doi.org/10.3390/s120100260. open in new tab
  112. Tikk, K., Haugen, J.-E., Andersen, H. J., & Aaslyng, M. D. (2008). Monitoring of warmed- over flavour in pork using the electronic nose -Correlation to sensory attributes and secondary lipid oxidation products. Meat Science, 80(4), 1254-1263. http://dx.doi. org/10.1016/j.meatsci.2008.05.040. open in new tab
  113. Tominaga, Y. (1999). Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN. Chemometrics and Intelligent Laboratory Systems, 49(1), 105-115. http://dx.doi.org/10.1016/S0169-7439(99)00034-9. open in new tab
  114. ul Hasan, N., Ejaz, N., Ejaz, W., & Kim, H. S. (2012). Meat and fish freshness inspection system based on odor sensing. Sensors (Basel, Switzerland), 12(11), 15542-15557. http://dx.doi.org/10.3390/s121115542. open in new tab
  115. Vernat-Rossi, V., Garcia, C., Talon, R., Denoyer, C., & Berdagué, J.-L. (1996). Rapid discrimination of meat products and bacterial strains using semiconductor gas sensors. Sensors and Actuators B: Chemical, 37(1-2), 43-48. http://dx.doi.org/10. 1016/S0925-4005(97)80070-6. open in new tab
  116. Vestergaard, J. S., Haugen, J.-E., & Byrne, D. V. (2006). Application of an electronic nose for measurements of boar taint in entire male pigs. Meat Science, 74(3), 564-577. http://dx.doi.org/10.1016/j.meatsci.2006.05.005. open in new tab
  117. Vestergaard, J. S., Martens, M., & Turkki, P. (2007a). Analysis of sensory quality changes during storage of a modified atmosphere packaged meat product (pizza topping) by an electronic nose system. LWT -Food Science and Technology, 40(6), 1083-1094. http://dx.doi.org/10.1016/j.lwt.2006.06.009. open in new tab
  118. Vestergaard, J. S., Martens, M., & Turkki, P. (2007b). Application of an electronic nose system for prediction of sensory quality changes of a meat product (pizza topping) during storage. LWT -Food Science and Technology, 40(6), 1095-1101. http://dx.doi. org/10.1016/j.lwt.2006.06.008. open in new tab
  119. Wang, D., Wang, X., Liu, T., & Liu, Y. (2012). Prediction of total viable counts on chilled pork using an electronic nose combined with support vector machine. Meat Science, 90(2), 373-377. http://dx.doi.org/10.1016/j.meatsci.2011.07.025. open in new tab
  120. Wilkens, W. F., & Hartman, J. D. (1964). An electronic analog for the olfactory processes? Annals of the New York Academy of Sciences, 116(2 Recent Advanc), 608-612. http:// dx.doi.org/10.1111/j.1749-6632.1964.tb45092.x. open in new tab
  121. Wilson, A. D. (2012). Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Procedia Technology, 1, 453-463. http://dx. doi.org/10.1016/j.protcy.2012.02.101. open in new tab
  122. Wilson, A. D. (2016). Recent progress in the design and clinical development of electronic-nose technologies. Nanobiosensors in Disease Diagnosis, 5, 15. http://dx.doi. org/10.2147/NDD.S66278. open in new tab
  123. Winquist, F., Hornsten, E. G., Sundgren, H., & Lundstrom, I. (1993). Performance of an electronic nose for quality estimation of ground meat. Measurement Science and Technology, 4(12), 1493-1500. http://dx.doi.org/10.1088/0957-0233/4/12/029. open in new tab
  124. Wojnowski, W., Majchrzak, T., Gębicki, J., Dymerski, T., & Namieśnik, J. (2016). In: In P. Jasiński (Ed.), Comparison of the measurement techniques employed for evaluation of ambient air odor qualityInternational Society for Optics and Photonicshttp://dx.doi. org/10.1117/12.2244678. open in new tab
  125. Xiaowei, H., Xiaobo, Z., Jiewen, Z., Jiyong, S., Zhihua, L., & Tingting, S. (2015). Monitoring the biogenic amines in Chinese traditional salted pork in jelly (Yao-meat) by colorimetric sensor array based on nine natural pigments. International Journal of Food Science & Technology, 50(1), 203-209. http://dx.doi.org/10.1111/ijfs.12620. open in new tab
  126. Xu, Y., Cheung, W., Winder, C. L., & Goodacre, R. (2010). VOC-based metabolic profiling for food spoilage detection with the application to detecting Salmonella typhimurium- contaminated pork. Analytical and Bioanalytical Chemistry, 397(6), 2439-2449. http://dx.doi.org/10.1007/s00216-010-3771-z. open in new tab
  127. Xue, J., Dial, G. D., Holton, E. E., Vickers, Z., Squires, E. J., Lou, Y., ... open in new tab
  128. Morel, N. (1996). Breed differences in boar taint: relationship between tissue levels boar taint compounds and sensory analysis of taint. Journal of Animal Science, 74(9), 2170. http://dx.doi.org/10.2527/1996.7492170x. open in new tab
  129. Yadava, R. D. S., & Chaudhary, R. (2006). Solvation, transduction and independent component analysis for pattern recognition in SAW electronic nose. Sensors and Actuators B: Chemical, 113(1), 1-21. http://dx.doi.org/10.1016/j.snb.2005.02.031. open in new tab
  130. Zhang, Z., Tong, J., Chen, D.h., & Lan, Y.b. (2008). Electronic nose with an air sensor matrix for detecting beef freshness. Journal of Bionic Engineering, 5(1), 67-73. http:// dx.doi.org/10.1016/S1672-6529(08)60008-6. open in new tab
  131. Zhang, Tian, F.-C., Peng, X.-W., & Yin, X. (2014a). A rapid discreteness correction scheme for reproducibility enhancement among a batch of MOS gas sensors. Sensors and Actuators A: Physical, 205, 170-176. http://dx.doi.org/10.1016/j.sna.2013.11.015. open in new tab
  132. Zhang, L., Tian, F., & Pei, G. (2014b). A novel sensor selection using pattern recognition in electronic nose. Measurement, 54, 31-39. http://dx.doi.org/10.1016/j. measurement.2014.04.005. open in new tab
Verified by:
Gdańsk University of Technology

seen 69 times

Recommended for you

Meta Tags