Embedded device for indoor positioning of mobile terminals in ISM 2.4 GHz frequency band integrated with ESPAR antenna - Publication - Bridge of Knowledge

Search

Embedded device for indoor positioning of mobile terminals in ISM 2.4 GHz frequency band integrated with ESPAR antenna

Abstract

In the era of multifunctional mobile phones, wireless positioning is one of the most important branches of telecommunications development. This functionality is possible thanks to global positioning systems such as GPS, whose services are available to every average user. Global systems, however, suffer from their low accuracy in confined environments such as forests and building interiors. A popular workaround to this limitation is the use of local indoor positioning systems. The disadvantage of such solutions, however, is the high cost associated with the hardware infrastructure.

The goal of this thesis was to create a device implementing the functionality of the mobile terminal positioning based on a local Wi-Fi network and the ESPAR smart antenna. The thesis begins with an explanation of the theoretical issues related to positioning algorithms and with designing the developed system. The process of designing such a device is presented through solving subsequent implementation problems. The project resulted in creation of a system capable of positioning a mobile terminal connected to the Wi-Fi network. The system has been subjected to accuracy tests, carried out in a 2D space. During the measurements, reference and test points were defined for the k-NN positioning algorithm. The accuracy of the mobile terminal positioning in the test points was examined in dependence on the parameters of the algorithm. The tests proved the positioning accuracy to be satisfactory.

The thesis proves the possibility of creating a local positioning system without using a significant hardware resources. Using a locating device with an ESPAR antenna and Wi-Fi access points instead of a standard sensor network is enough to create a complete system.

Acknowledgement: This paper is a result of the SCOTT project (www.scott-project.eu) which has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737422. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium, Norway.

The document reflects only the author’s view and the Commission is not responsible for any use that may be made of the information it contains.

Cite as

Full text

download paper
downloaded 213 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Thesis, nostrification
Type:
Thesis, nostrification
Publication year:
2018
Bibliography: test
  1. Lingwen Zhang, Cheng Tao and Gang Yang (April 26th 2011). Wireless Positioning: Fundamentals, Systems and State of the Art Signal Processing Techniques, Cellular Networks Agassi Melikov, IntechOpen, DOI: 10.5772/14841, https://www.intechopen.com/books/cellular-networks-positioning-performance-analysis- reliability/wireless-positioning-fundamentals-systems-and-state-of-the-art-signal-processing- techniques, s. 3, (data dostępu: 14.08.2018 r.). open in new tab
  2. Ian Sharp, Kegen Yu: Wireless Positioning: Principles and Practice, Springer, 2018, s. 1-5. open in new tab
  3. M. Rzymowski, P. Woznica, and L. Kulas: Single-Anchor Indoor Localization Using ESPAR Antenna, In Proc. IEEE Antennas and Wireless Propagation Letters ( Volume: 15 ), 09 November 2015, s 1183 -1186. open in new tab
  4. Jill K. Nelson, George Mason: A Sequential Detection Approach to Indoor Positioning Using RSS-Based Fingerprinting, In Proc. 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), DOI: 10.1109/GlobalSIP.2016.7906017, 2016. open in new tab
  5. Mohd Ezanee Rusli, Mohammad Ali, Norziana Jamil, Marina Md Din: An Improved Indoor Positioning Algorithm Based on RSSI-Trilateration techniquefor Internet of Things (IOT), In Proc. 6th International Conference on Computer and Communication Engineering, 2016, s 72-77.
  6. David Törnqvist, Proximity vs True Location, August 25th, 2015, https://senion.com/insights/point-positioning-vs-true-location/, (data dostępu: 14.08.2018 r.) open in new tab
  7. Tavish Srivastava, Introduction to k-Nearest Neighbors: Simplified (with implementation in Python), 26.03.2016, analyticsvidhya.com, https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm- clustering/, (data dostępu: 26.07.2018 r.). open in new tab
  8. Rzymowski M., Kulas Ł.: Design, Realization and Measurements of Enhanced Performance open in new tab
  9. GHz ESPAR Antenna for Localization in Wireless Sensor Networks, EuroCon 2013, 1-4 July 2013, Zagreb, Croatia, s.1-3. open in new tab
  10. Alan Bensky, Wireless Positioning Technologies and Applications ,s.147-153. open in new tab
  11. Link-Layer header types, Tcpdump.org -oficjalna strona programu Tcpdump, http://www.tcpdump.org/linktypes.html, (data dostępu: 12.03.2017 r.). open in new tab
  12. Wireless.wiki.kernel.org, https://wireless.wiki.kernel.org/en/developers/documentation/radiotap, (data dostępu: 13.01.2018 r.). open in new tab
  13. Radiotap.org -oficjalna strona Radiotap, http://www.radiotap.org/, (data dostępu: 13.01.2018 r.). open in new tab
  14. Tim Carstens, Guy Harris, Programming with pcap, Tcpdump.org -oficjalna strona programu Tcpdump, http://www.tcpdump.org/pcap.html, (data dostępu: 12.03.2017 r.).
  15. Dokumentacja libpcap, Tcpdump.org -oficjalna strona programu Tcpdump, http://www.tcpdump.org/manpages/pcap.3pcap.html, (data dostępu: 12.03.2017 r.). open in new tab
  16. Plik Pcap.h z biblioteki libpcap, https://github.com/the-tcpdump- group/libpcap/blob/master/pcap/pcap.h, (data dostępu: 12.03.2017 r.).
  17. NetBSD Kernel Developer's Manual, March 12, 2006, netbsd.gw.com, http://netbsd.gw.com/cgi-bin/man-cgi?ieee80211_radiotap+9+NetBSD-current, (data dostępu: 12.03.2017 r.). open in new tab
  18. Andy Green, How to use radiotap headers, Kernel.org -Archiwum kerneli systemu Linux, https://www.kernel.org/doc/Documentation/networking/radiotap-headers.txt, (data dostępu: 12.03.2017 r.). open in new tab
  19. Sumanth Kavuri, Understanding the Address Fields in 802.11 frames, 21.09.2013, Blogspot.com, http://80211notes.blogspot.com/2013/09/understanding-address-fields-in- 80211.html, (data dostępu: 12.03.2017 r.).
  20. Matthew Gast, 802.11 Wireless Networks: The Definitive Guide, "O'Reilly Media, Inc.", 2005, s. 47-50. open in new tab
  21. Tutorialspoint.com -dokumentacja i samouczek Node.js, https://www.tutorialspoint.com/nodejs/nodejs_npm.htm, (data dostępu: 26.07.2018 r.)
  22. Expressjs.com -oficjalna strona frameworku Express, https://expressjs.com/, (data dostępu: 26.07.2018 r.).
  23. Socket.io -oficjalna strona biblioteki socket.io, https://socket.io/, (data dostępu: 26.07.2018 r.). open in new tab
  24. Nodejs.org -dokumentacja frameworku Node.js, https://nodejs.org/api/net.html#net_net, (data dostępu: 26.07.2018 r.). open in new tab
  25. Michael Kerrisk, Linux Programmer's Manual, 2017-09-15, man7.org -dokumentacja systemu Linux, http://man7.org/linux/man-pages/man3/termios.3.html, (data dostępu: 21.06.2018 r.).
  26. Steve Friedl, Understanding UNIX termios VMIN and VTIME, Unixwiz.net, http://unixwiz.net/techtips/termios-vmin-vtime.html, (data dostępu: 26.07.2018).
  27. Ian Poole, Wi-Fi / WLAN Channels, Frequencies, Bands & Bandwidths, radio- electronics.com, https://www.radio-electronics.com/info/wireless/wi-fi/80211-channels- number-frequencies-bandwidth.php, (data dostępu: 14.08.2018 r.).
  28. Stackexchange.com, http://networkengineering.stackexchange.com/questions/6534/does- wifi-router-ap-change-the-working-channel-automatically-during-the-normal-u, (data dostępu: 15.10.2017 r.).
  29. ask.wireshark.org -forum oficjalnej strony programu Wireshark, https://ask.wireshark.org/questions/27463/how-to-capture-wireless-traffic-on-a-particular- channel-and-access-point, (data dostępu: 15.10.2017 r.). open in new tab
  30. Cumulative Distribution Function CDF, statisticshowto.com, http://www.statisticshowto.com/cumulative-distribution-function/, (data dostępu: 14.08.2018 r.). open in new tab
  31. WYKAZ RYSUNKÓW
  32. Rys. 3.2. Przykładowa konfiguracja kluczy anteny wraz z przybliżonym kształtem charakterystyki tejże konfiguracji...................................................................................... 16 open in new tab
  33. Rys. 3.3. Mapa ciepła dla każdej z 12 konfiguracji anteny............................................... 17 open in new tab
  34. Rys. 5.1. Zagnieżdżona struktura ramki 802.11 z dodanym nagłówkiem Radiotap......... 25 open in new tab
  35. Rys. 5.2 Komunikacja i przechwyt pakietów w systemie …............................................ 31 open in new tab
  36. Rys. 5.3. Bloki jednostek sieciowych w systemie …........................................................ 32 open in new tab
  37. Rys. 5.6. Struktura Bazy danych i przechowywane w niej rekordy ….............................. 39 open in new tab
  38. Rys. 5.7. Macierz wynikowa skanu zawierająca obiekty typu mac_channel_record_final …........................................................................................... 42 open in new tab
  39. Rys. 5.8. Widok wyniku skanu w interfejsie strony internetowej ….................................. 43 open in new tab
  40. Rys. 6.1. Siatka w środowisku pomiarowym na wykresie XY........................................... 46 open in new tab
  41. Rys. 6.2. Schematyczne rozmieszczenie umeblowania i urządzeń w pomieszczeniu..... 47 open in new tab
  42. Rys. 6.5. Wykres CDF przedstawiający różnice między symulacjami z różnymi wartościami k................................................................................................... 50 open in new tab
  43. Rys. 6.6. Wykres CDF przedstawiający różnice między wynikami lokalizacji uzyskanymi dla trzech różnych map kalibracyjnych......................................................... 51 open in new tab
  44. Rys. 6.7. Wykres CDF przedstawiający różnice między symulacjami w których użyto parametru p na 3 sposoby...................................................................... 52 open in new tab
  45. Rys. 6.8. Wybrany wykres CDF z najmniejszym błędem lokalizacji................................. 53 open in new tab
Verified by:
No verification

seen 213 times

Recommended for you

Meta Tags