Entanglement of genuinely entangled subspaces and states: Exact, approximate, and numerical results - Publication - Bridge of Knowledge

Search

Entanglement of genuinely entangled subspaces and states: Exact, approximate, and numerical results

Abstract

Genuinely entangled subspaces (GESs) are those subspaces of multipartite Hilbert spaces that consist only of genuinely multiparty entangled pure states. They are natural generalizations of the well-known notion of completely entangled subspaces, which by definition are void of fully product vectors. Entangled subspaces are an important tool of quantum information theory as they directly lead to constructions of entangled states, since any state supported on such a subspace is automatically entangled. Moreover, they have also proven useful in the area of quantum error correction. In our recent contribution [M. Demianowicz and R. Augusiak, Phys. Rev. A 98, 012313 (2018)], we have studied the notion of a GES qualitatively in relation to so-called nonorthogonal unextendible product bases and provided a few constructions of such subspaces. The main aim of the present work is to perform a quantitative study of the entanglement properties of GESs. First, we show how one can attempt to compute analytically the subspace entanglement, defined as the entanglement of the least-entangled vector from the subspace, of a GES and illustrate our method by applying it to a new class of GESs. Second, we show that certain semidefinite programming relaxations can be exploited to estimate the entanglement of a GES and apply this observation to a few classes of GESs revealing that in many cases the method provides the exact results. Finally, we study the entanglement of certain states supported on GESs, which is compared to the obtained values of the entanglement of the corresponding subspaces, and find the white-noise robustness of several GESs. In our study we use the (generalized) geometric measure as the quantifier of entanglement.

Citations

  • 9

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 53 times
Publication version
Accepted or Published Version
License
Copyright (2019 American Physical Society)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
PHYSICAL REVIEW A no. 100, pages 1 - 19,
ISSN: 2469-9926
Language:
English
Publication year:
2019
Bibliographic description:
Demianowicz M., Augusiak R.: Entanglement of genuinely entangled subspaces and states: Exact, approximate, and numerical results// PHYSICAL REVIEW A -Vol. 100,iss. 6 (2019), s.1-19
DOI:
Digital Object Identifier (open in new tab) 10.1103/physreva.100.062318
Bibliography: test
  1. G. Tóth, Phys. Rev. A 85, 022322 (2012). open in new tab
  2. M. Rossi, D. Bruß, and C. Macchiavello, Phys. Rev. A 87, 022331 (2013). open in new tab
  3. M. Epping, H. Kampermann, C. Macchiavello, and D. Bruß, New J. Phys. 19, 093012 (2017). open in new tab
  4. A. Osterloh, J. Phys. A: Math. Theor. 47, 495301 (2014). open in new tab
  5. D. Goyeneche and K.Życzkowski, Phys. Rev. A 90, 022316 (2014). open in new tab
  6. R. Augusiak, M. Demianowicz, and J. Tura, Phys. Rev. A 98, 012321 (2018). open in new tab
  7. F. Fröwis, P. C. Strassman, A. Tiranov, C. Gut, N. Lavoie, J. Brunner, F. Busseries, M. Afzelius, and N. Gisin, Nat. Commun. 8, 907 (2017). open in new tab
  8. M. Demianowicz and R. Augusiak, Phys. Rev. A 98, 012313 (2018). open in new tab
  9. T. Cubitt, A. Montanaro, and A. Winter, J. Math. Phys. 49, 022107 (2008). open in new tab
  10. K. Parthasarathy, Proc. Math. Sci. 114, 365 (2004). open in new tab
  11. B. V. R. Bhat, Int. J. Quantum. Inf. 04, 325 (2006). open in new tab
  12. G. Gour and N. R. Wallach, Phys. Rev. A 76, 042309 (2007). open in new tab
  13. Z. Raissi, C. Gogolin, A. Riera, and A. Acín, J. Phys. A: Math. Theor. 51, 075301 (2018). open in new tab
  14. S. Ball, arXiv:1907.04391. open in new tab
  15. F. Huber and M. Grassl, arXiv:1907.07733. open in new tab
  16. D. Alsina and M. Razavi, arXiv:1907.11253.
  17. W. Helwig, W. Cui, J. I. Latorre, A. Riera, and H.-K. Lo, Phys. Rev. A 86, 052335 (2012). open in new tab
  18. D. Goyeneche, Z. Raissi, S. Di Martino, and K.Życzkowski, Phys. Rev. A 97, 062326 (2018). open in new tab
  19. K. Wang, L. Chen, L. Zhao, and Y. Guo, Quant. Inf. Proc. 18, 202 (2019). open in new tab
  20. C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Phys. Rev. Lett. 82, 5385 (1999). open in new tab
  21. S. De Rinaldis, Phys. Rev. A 70, 022309 (2004). open in new tab
  22. R. Duan, Y. Xin, and M. Ying, Phys. Rev. A 81, 032329 (2010). open in new tab
  23. R. Augusiak, J. Stasińska, C. Hadley, J. K. Korbicz, M. Lewenstein, and A. Acín, Phys. Rev. Lett. 107, 070401 (2011). open in new tab
  24. S. Agrawal, S. Halder, and M. Banik, Phys. Rev. A 99, 032335 (2019). open in new tab
  25. G.-Q. Zhu, Cent. Eur. J. Phys. 7, 135 (2009). open in new tab
  26. V. Cappellini, H.-J. Sommers, and K.Życzkowski, Phys. Rev. A 74, 062322 (2006). open in new tab
  27. G. Gour and A. Roy, Phys. Rev. A 77, 012336 (2008). open in new tab
  28. A. Shimony, Ann. N.Y. Acad. Sci. 755, 675 (1995). open in new tab
  29. H. Barnum and N. Linden, J. Phys. A: Math. Gen. 34, 6787 (2001). open in new tab
  30. T.-C. Wei and P. M. Goldbart, Phys. Rev. A 68, 042307 (2003). open in new tab
  31. T. Das, S. S. Roy, S. Bagchi, A. Misra, A. Sen(De), and U. Sen, Phys. Rev. A 94, 022336 (2016). open in new tab
  32. D. Markham, A. Miyake, and S. Virmani, New J. Phys. 9, 194 (2007). open in new tab
  33. R. Orús, Phys. Rev. Lett. 100, 130502 (2008). open in new tab
  34. M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Virmani, Phys. Rev. A 77, 012104 (2008). open in new tab
  35. D. Gross, S. T. Flammia, and J. Eisert, Phys. Rev. Lett. 102, 190501 (2009). open in new tab
  36. D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, and A. Winter, Phys. Rev. Lett. 101, 070502 (2008). open in new tab
  37. A. Sen(De) and U. Sen, Phys. Rev. A 81, 012308 (2010). open in new tab
  38. C. Branciard, H. Zhu, L. Chen, and V. Scarani, Phys. Rev. A 82, 012327 (2010). open in new tab
  39. M. Blasone, F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 77, 062304 (2008). open in new tab
  40. L. Losonczi, Acta Math. Hung. 60, 309 (1992). open in new tab
  41. Y. Huang, New J. Phys. 16, 033027 (2014). open in new tab
  42. Z. Zhang, Y. Dai, Y. Dong, and C. Zhang, arXiv:1903.10944.
  43. A. Aloy, J. Tura, F. Baccari, A. Acn, M. Lewenstein, and R. Augusiak, Phys. Rev. Lett. 123, 100507 (2019). open in new tab
  44. A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys. Rev. A 69, 022308 (2004). open in new tab
  45. M. Navascués, M. Owari, and M. B. Plenio, in Theory of Quantum Computation, Communication, and Cryptography: 4th Workshop, TQC 2009, Waterloo, Canada, May 11-13, 2009, Revised Selected Papers, edited by A. Childs and M. Mosca (Springer, Berlin, 2009), pp. 94-106. open in new tab
  46. J. Eisert, P. Hyllus, O. Gühne, and M. Curty, Phys. Rev. A 70, 062317 (2004). open in new tab
  47. H.-P. Breuer, Phys. Rev. Lett. 97, 080501 (2006). open in new tab
  48. W. Hall, J. Phys. A: Math. Gen. 39, 14119 (2006). open in new tab
  49. C. Lancien, O. Gühne, R. Sengupta, and M. Huber, J. Phys. A: Math. Theor. 48, 505302 (2015). open in new tab
  50. H. Zhu, L. Chen, and M. Hayashi, New J. Phys. 12, 083002 (2010). open in new tab
  51. A. J. Bracken, Phys. Rev. A 69, 052331 (2004). open in new tab
  52. M. Lewenstein, B. Kraus, P. Horodecki, and J. I. Cirac, Phys. Rev. A 63, 044304 (2001). open in new tab
  53. B. Jungnitsch, T. Moroder, and O. Gühne, Phys. Rev. Lett. 106, 190502 (2011). open in new tab
  54. A. Streltsov, H. Kampermann, and D. Bruß, New J. Phys. 12, 123004 (2010). open in new tab
  55. B. Regula, M. Piani, M. Cianciaruso, T. R. Bromley, A. Streltsov, and G. Adesso, New J. Phys. 20, 033012 (2018). open in new tab
  56. J. Watrous, Chicago J. Theor. Comput. Sci. 2013, 8 (2013).
  57. A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. A 84, 022323 (2011). open in new tab
  58. M. Demianowicz, Entanglement robustness to local noise of genuinely entangled subspaces (unpublished). open in new tab
  59. M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, Version 2.1 2018, http://cvxr.com/cvx. open in new tab
  60. M. Grant and S. Boyd, in Recent Advances in Learning and Control, edited by V. Blondel, S. Boyd, and H. Kimura, Lecture Notes in Control and Information Sciences (Springer-Verlag Limited, 2008), pp. 95-110. open in new tab
  61. N. Johnston, QETLAB: A MATLAB Toolbox for Quantum Entanglement, Version 0.9, 2016, http://qetlab.com, https://doi. org/10.5281/zenodo.44637. open in new tab
Verified by:
Gdańsk University of Technology

seen 102 times

Recommended for you

Meta Tags