Environmental fate and ecotoxicity of diclofenac degradation products generated by photo-assisted advanced oxidation processes
Abstract
Diclofenac (DCF), a widely used non-steroidal anti-inflammatory drug (NSAID), poses environmental concerns due to its persistence, bioaccumulation potential, and transformation into toxic byproducts during oxidative and chlorination processes. This study investigated the photodegradation of DCF, both directly and in the presence of oxidants, to characterize the resulting degradation products and assess their potential environmental impact.
The highest efficiency for direct UV photodegradation of DCF was observed at pH 5, while the addition of oxidants significantly accelerated the degradation rate. Among the advanced oxidation processes (AOPs) examined, the H₂O₂/UV system, with a DCF:H₂O₂ molar ratio of 1:30, exhibited the most effective performance in terms of DCF removal and total organic carbon (TOC) reduction. However, ecotoxicity assessments using Alivibrio fischeri, Daphnia magna, and Lemna minor revealed that AOPs generally increased the toxicity of the resulting solutions compared to untreated DCF.
Toxicity analyses showed that post-reaction mixtures from AOPs involving NaOCl exhibited the highest toxic effects, consistent with forming specific transformation products identified as highly toxic by ECOSAR modeling. Additionally, the analysis of the physicochemical properties of DCF and its transformation products, including solubility and organic matter affinity, suggests a limited potential for long-range transport. These compounds are more likely to bind to sediments, reducing their mobility in groundwater.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (4)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Magazine publication
- Type:
- Magazine publication
- Published in:
-
JOURNAL OF HAZARDOUS MATERIALS
ISSN: 0304-3894 - ISSN:
- 03043894
- Publication year:
- 2025
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.jhazmat.2025.137708
- Verified by:
- No verification
seen 4 times
Recommended for you
Environmental and toxicological aspects of sulfamethoxazole photodegradation in the presence of oxidizing agents
- W. Studziński,
- A. Gackowska,
- E. Kudlek
- + 1 authors
2025
Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations
- M. P. Rayaroth,
- U. K. Aravind,
- G. Boczkaj
- + 1 authors
2023